		Guía Docente			
	Datos Iden	tificativos			2015/16
Asignatura (*)	Análise de Estruturas	Análise de Estruturas			632G01019
Titulación	Grao en Enxeñaría de Obras Públicas				-
		Descriptores			
Ciclo	Período	Curso		Tipo	Créditos
Grao	Anual	Terceiro		Obrigatoria	9
Idioma	Castelán				
lodalidade docente	Presencial				
Prerrequisitos					
Departamento	Tecnoloxía da Construción				
Coordinación	Nieto Mouronte, Felix	Correo el	ectrónico	felix.nieto@udc	.es
Profesorado	Nieto Mouronte, Felix	Correo el	Correo electrónico felix.niet		:.es
	Perezzan Pardo, Juan Carlos			j.perezzan@ud	c.es
Web		-			
Descrición xeral	Los contenidos de la asignatura se corresponden con un curso clásico de análisis de estructuras				

	Competencias / Resultados do título
Código	Competencias / Resultados do título
A13	Conocimiento de la relación entre la estructura de los materiales y las propiedades mecánicas que de ella se derivan.
A14	Capacidad para analizar y comprender cómo las características de las estructuras influyen en su comportamiento.
A15	Capacidad para aplicar los conocimientos sobre el funcionamiento resistente de las estructuras para dimensionarlas siguiendo las
	normativas existentes y utilizando métodos de cálculo analíticos y numéricos.

Resultados da aprendizaxe				
Resultados de aprendizaxe			ias /	
	Result	ados do	título	
Conocer los procedimientos analíticos de resolución de las tipologías estructurales fundamentales: pórticos, emparrillados,	A13			
arcos, cables.	A14			
Aplicación de métodos energéticos en la resolución de problemas de análisis estructural.				
Resolución de problemas de inestabilidad elástica de estructuras de barras				
Resolución de problemas de flexión de placas.				

Contidos		
Temas	Subtemas	

Tema 1. Vigas hiperestáticas	1.1 Introducción.				
	1.2 Vigas hiperestáticas de un vano.				
	1.2.1 Introducción.				
	1.2.2 Descenso de apoyos.				
	1.2.3 Giros en empotramientos.				
	1.2.4 Enlace mediante un muelle elástico y lineal				
	1.3 Vigas hiperestáticas de varios vanos.				
	1.3.1 Planteamiento general.				
	1.3.2 Esfuerzos creados por movimientos en los apoyos.				
	1.3.3 Vigas continuas hiperestáticas con articulaciones interiores.				
	1.3.4 Vigas continuas sobre apoyos elásticos.				
	1.4 Simetría y antimetría en vigas continuas.				
	1.4.1 Introducción				
	1.4.2 Vigas continuas simétricas con número par de vanos.				
	1.4.3 Vigas continuas simétricas con número impar de vanos.				
	1.5 Efecto de la variación de temperatura en piezas prismáticas.				
	no ziono de la vanasion de temperatura en piezas prematedes.				
Tema 2. Pórticos elementales planos	2.1. Estructuras planas de nudos rígidos. Hipótesis de deformación.				
	2.2. Traslacionalidad e intraslacionalidad. Concepto de estructura crítica.				
	2.3. Simetría y antimetría en pórticos planos.				
	2.3.1. Estructuras con simetría geométrica solicitadas por cargas simétricas.				
	2.3.2. Estructuras con simetría geométrica solicitadas por carga antimétricas.				
	2.4. Ecuaciones de rigidez de la barra recta a flexión.				
	2.5. Proceso de resolución de pórticos planos.				
	2.5.1. Introducción.				
	2.5.2. Pórticos planos intraslacionales.				
	2.5.3. Pórticos planos traslacionales solicitados por cargas verticales.				
	2.5.4. Pórticos planos traslacionales solicitados por cargas hoizontales.				
	2.5.5. Pórticos planos con barras inclinadas.				
	2.5.6. Pórticos planos con enlaces semirrígidos.				
	2.6. Estructuras que forman recintos cerrados. Marcos elementales.				
Tema 3. Emparrillados	3.1. Introducción.				
	3.2. Ecuaciones de rigidez a flexión y torsión de la barra.				
	3.3. Emparrillados planos con enlaces empotrados o articulados.				
	3.4. Emparrillados planos con enlaces a torsión simirrígidos.				
	3.5. Simetría y antimetría en emparrillados planos.				
	3.5.1. Emparrillados simétricos solicitados por cargas simétricas.				
	3.5.2. Emparrillados simétricos solicitados por cargas antimétricas.				
	3.6. Casos especiales de emparrillados. Vigas balcón.				
Tema 4. Estructuras de cables	4.1. Introducción.				
	4.2. Cable solicitado por cargas concentradas.				
	4.3. Cable solicitado por cargas distribuidas. Curvas funiculares.				
	4.3.1. Ecuación diferencial asociada a la deformación de un cable bajo carga				
	4.3.1. Ecuación diferencial asociada a la deformación de un cable bajo carga distribuida.				
	4.3.1. Ecuación diferencial asociada a la deformación de un cable bajo carga				

Tema 5. Arcos	5.1. Introducción.
	5.2. Concepto de línea y estructura antifunicular.
	5.3. Arcos biarticulados.
	5.3.1. Arcos de directriz parabólica.
	5.3.2. Arcos de directriz circular.
	5.4. Arcos atirantados.
	5.5. Arcos biempotrados.
	5.6. Arcos con articulaciones interiores.
	5.7. Arcos de geometría asimétrica.
	5.8. Simetría y antimetría en arcos elementales.
	5.9. Piezas de directriz cerrada.
Tema 6. Principios de trabajos virtuales	6.1. Introducción
	6.2. El principio de los movimientos virtuales.
	6.2.1. Trabajo virtual de partículas aisladas.
	6.2.2. Trabajo virtual de un sólido rígido.
	6.2.3. Movimientos virtuales en estructuras de barras
	a) Ejemplo 1: Cálculo de movimientos en una estructura de nudos articulados
	hiperestática.
	6.3. El principio de las fuerzas virtuales.
	6.3.1. Cálculo de movimientos mediante el principio de las fuerzas virtuales.
	a) Ejemplo 1: Cálculo de flecha, material elástico y lineal.
	b) Ejemplo 2: Cálculo de flecha, material no lineal.
	c) Ejemplo 3: Cálculo de reacciones en una estructura hiperestática.
	d) Ejemplo 4: Cálculo de movimientos en una estructura de nudos articulados.
	e) Ejemplo 5: Cálculo de movimientos en una estructura de nudos articulados con
	material no lineal.
	f) Ejemplo 6: Cálculo del giro en una estructura hiperestática.
	g) Ejemplo 7: Cálculo de movimientos en una estructura de nudos articulados
	hiperestática.
	h) Ejemplo 8: Cálculo del cambio de orientación de una barra de una estructura de
	nudos articulados.
	i) Ejemplo 9: Cálculo de la variación de la distancia entre dos nudos de una estructura
	de nudos articulados.

Tema 7. Teoremas energéticos	7.1 Introducción al concepto de energía.
	7.2 Energía potencial total de una estructura.
	7.3 Energía potencial total complementaria de una estructura.
	7.4 Teorema de Clapeyron.
	7.5 Primer teorema de Engesser.
	7.5.1 Material lineal.
	7.5.2 Material no lineal.
	7.5.3 Cálculo de movimientos en secciones donde no hay aplicadas cargas
	exteriores.
	7.5.4 Estructuras de nudos articulados.
	7.6 Teoremas de Castigliano.
	7.7 Teorema de la energía complementaria de deformación mínima.
	7.7.1 Ejemplo: cálculo de reacciones hiperestáticas.
	7.7.2 Ejemplo: axiles y reacciones hiperestáticas en estructuras de nudos articulados.
	Material no lineal.
	7.7.3 Ejemplo: reacciones hiperestáticas en estructuras con movimientos impuestos.
	7.7.4 Ejemplo: hiperestaticidad provocada por la existencia de barras redundantes en
	estructuras de nudos articulados.
	7.7.5 Generalización cuando en las barras existen incrementos de temperatura y/o
	errores de fabricación.
	7.8 Teorema del trabajo mínimo.
Tema 8. Estructuras hiperestáticas	8.1. Tipologías hiperestáticas. Causas de hiperestaticidad.
	8.2. Cálculo de esfuerzos axiles en estructuras hiperestáticas
	8.2.1 Aplicación del principio de las fuerzas virtuales.
	8.2.2 Aplicación del principio de la energía de deformación complementaria mínima.
	8.3 Cálculo de movimientos en estructuras hiperestáticas de nudos articulados.
	8.3.1 Aplicación del principio de las fuerzas virtuales
	8.3.2 Aplicación del primer teorema de Engesser.
	8.4 Estructuras hiperestáticas con combinación de tipologías.
Tema 9. Líneas de influencia	Lineas de influencia de reacciones y esfuerzos.
	Líneas de influencia de movimientos.
	Envolventes.
Tema 10. Inestabilidad elástica de estructuras de barras	Teoría de segundo orden
	Padeo de barras comprimidas
	Método de Euler
	Método de Rayleigh
	Pandeo global de estructuras de múltiples barras

	Planificaci	ón		
Metodoloxías / probas	Competencias / Resultados	Horas lectivas (presenciais e virtuais)	Horas traballo autónomo	Horas totais
Sesión maxistral	A13 A14 A15	60	72	132
Solución de problemas	A13 A14 A15	30	57	87
Proba obxectiva	A13 A14 A15	6	0	6
Atención personalizada		0	0	0

	Metodoloxías
Metodoloxías	Descrición

Sesión maxistral	El profesor expondrá y desarrollará en el aula los conceptos teóricos incluidos en cada uno de los temas. A lo largo de la exposición se incluirán ejemplos prácticos de resolución de estructuras en los que se apliquen los conceptos explicados.
Solución de	En cada uno de los temas el profesor propondrá una serie de ejercicios a los alumnos para que los resuelvan aplicando los
problemas	conceptos explicados en en el aula. Al cabo de unos días, el profesor resolverá total o parcialmente los ejercicos propuestos.
	Se aplicará una metodología interactiva, pudiendo intervenir los estudiantes, con sus preguntas en el momento en que lo
	estimen oportuno. De la misma manera, se animará a los estudiantes a participar en la resolución de los ejercicios,
	explicando el proceso de resolución que ellos han seguidoetc.
Proba obxectiva	Para superar la asignatura los estudiantes deben aprobar el examen de la asignatura en el que se podrán incluir cuestiones
	teóricas y/o prácticas sobre los temas trabajados durante el curso así como la resolución de problemas de análisis de
	estructuras.

Atención personalizada				
Metodoloxías	Descrición			
Proba obxectiva	los estudiantes, tras su estudio personal de los diferentes temas, deberán consultar con el profesorado las dudas que puedan			
Sesión maxistral	tener, tanto de tipo conceptual como relativas a la resolución práctica de problemas. Los estudiantes podrán consultar con el			
Solución de	profesor en el horario de tutorías que se haya acordado.			
problemas				

Avaliación				
Metodoloxías	Competencias / Descrición		Cualificación	
	Resultados			
Proba obxectiva	A13 A14 A15	Los estudiantes deberán superar (nota igual o superior a 5 sobre 10) cada una de las	100	
		partes (cuatrimestre 1 y cuatrimestre 2) en que se divide la asignatura.		
		En el examen final, habrá dos partes, correspondientes a cada uno de los		
		cuatrimestres. Los estudiantes con algún cuatrimestre superado podrán presentarse		
		únicamente a la parte que tengan pendiente. Los estudiantes que no hubiesen		
		superado ninguno de los examenes correspondientes al primer o segundo		
		cuatrimestres, deberán superar ambas partes en el examen final.		

Observacións avaliación	

Fontes de información		
Bibliografía básica	- Leet, Uang and Gilbert (). Fundamentals of structural analysis. McGraw-Hill Int. Edition	
	- Hibbeler, R. C. (). Análisis Estructural. Prentice Hall Hispanoamericana S.A	
	- West (). Analysis of structures. John Wiley & Dons	
	- Boresi, Schimidt and Sidebottom (). Advanced mechanics of materials. John Wiley & Dons	
	- Hernández Ibáñez, S (). Análisis lineal y no lineal de estructuras de barras. E.T.S.I.C.C.P. Universidade da Coruña	
Bibliografía complementaria		

	Recomendacións
	Materias que se recomenda ter cursado previamente
Resistencia de materiais/632G01015	
	Materias que se recomenda cursar simultaneamente
	Materias que continúan o temario

Estruturas Metálicas/632G01026	
Análise de Estruturas II/632G01029	
Observacións	

(*)A Guía docente é o documento onde se visualiza a proposta académica da UDC. Este documento é público e non se pode modificar, salvo casos excepcionais baixo a revisión do órgano competente dacordo coa normativa vixente que establece o proceso de elaboración de guías