		Guia	docente			
	Datos Identific	ativos				2015/16
Asignatura (*)	Ecuaciones diferenciales				Código	632G02017
Titulación	Grao en Tecnoloxía da Enxeñaría Civil					
		Des	criptores			
Ciclo	Periodo	C	urso		Tipo	Créditos
Grado	Anual	Se	egundo	Fo	ormación Básica	9
Idioma	Inglés					'
Modalidad docente	Presencial					
Prerrequisitos						
Departamento	Métodos Matemáticos e de Represe	entación				
Coordinador/a	Rodríguez-Vellando Fernández-Car	vajal,	Correo electró	ónico	pablo.rodriguez-v	rellando@udc.es
	Pablo					
Profesorado	Colominas Ezponda, Ignasi		Correo electró	ónico	ignacio.colomina	s@udc.es
	París López, José Rodríguez-Vellando Fernández-Carvajal,					es
					pablo.rodriguez-v	rellando@udc.es
	Pablo					
Web	caminos.udc.es/info/asignaturas/20	1	'		1	
Descripción general	Resolución de ecuaciones diferencia	ales ordina	arias			

	Competencias del título
Código	Competencias del título
A1	Capacidad para plantear y resolver los problemas matemáticos que puedan plantearse en el ejercicio de la profesión. En particular,
	conocer, entender y utilizar la notación matemática, así como los conceptos y técnicas del álgebra y del cálculo infinitesimal, los métodos
	analíticos que permiten la resolución de ecuaciones diferenciales ordinarias y en derivadas parciales, la geometría diferencial clásica y la
	teoría de campos, para su aplicación en la resolución de problemas de Ingeniería Civil.
B1	Aprender a aprender.
B2	Resolver problemas de forma efectiva.
В3	Aplicar un pensamiento crítico, lógico y creativo.
B4	Trabajar de forma autónoma con iniciativa.
B5	Trabajar de forma colaborativa.
B6	Comportarse con ética y responsabilidad social como ciudadano y como profesional.
B7	Comunicarse de manera efectiva en un entorno de trabajo.
B8	Reciclaje continúo de conocimientos en el ámbito global de actuación de la Ingeniería Civil.
B9	Comprender la importancia de la innovación en la profesión.
B10	Aprovechamiento e incorporación de las nuevas tecnologías.
B11	Entender y aplicar el marco legal de la disciplina.
B12	Comprensión de la necesidad de actuar de forma enriquecedora sobre el medio ambiente contribuyendo al desarrollo sostenible.
B13	Compresión de la necesidad de analizar la historia para entender el Presente.
B14	Apreciación de la diversidad.
B15	Facilidad para la integración en equipos multidisciplinares.
C1	Expresarse correctamente, tanto de forma oral como escrita, en las lenguas oficiales de la comunidad autónoma.
C2	Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero.
C3	Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su
	profesión y para el aprendizaje a lo largo de su vida.
C4	Desarrollarse para el ejercicio de una ciudadanía abierta, culta, crítica, comprometida, democrática y solidaria, capaz de analizar la
	realidad, diagnosticar problemas, formular e implantar soluciones basadas en el conocimiento y orientadas al bien común.
C5	Entender la importancia de la cultura emprendedora y conocer los medios al alcance de las personas emprendedoras.
C6	Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentars
C7	Asumir como profesional y ciudadano la importancia del aprendizaje a lo largo de la vida.

C8	Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la
	sociedad.
C9	Capacidad para organizar y dirigir equipos de trabajo.
C10	Capacidad de análisis, síntesis y estructuración de la información y las Ideas.
C11	Claridad en la formulación de hipótesis.
C12	Capacidad de abstracción.
C13	Capacidad de trabajo personal, organizado y planificado.
C14	Capacidad de autoaprendizaje mediante la inquietud por buscar y adquirir nuevos conocimientos, potenciando el uso de las nuevas
	tecnologías de la información.
C15	Capacidad de enfrentarse a situaciones nuevas.
C16	Habilidades comunicativas y claridad de exposición oral y escrita.
C17	Capacidad para aumentar la calidad en el diseño gráfico de las presentaciones de trabajos.
C18	Capacidad para aplicar conocimientos básicos en el aprendizaje de conocimientos tecnológicos y en su puesta en práctica.
C19	Capacidad de realizar pruebas, ensayos y experimentos, analizando, sintetizando e interpretando los resultados.

Resultados de aprendizaje				
Resultados de aprendizaje		Competencias de		
		título		
Capacidade para a resolución dos problemas matemáticos que poidan formularse no exercicio da profesión. En particular,	A1	B1	C1	
oñecer, entender e utilizar a notación matemática, así como os conceptos básicos que permiten a resolución de ecuacións		B2	C2	
iferenciais ordinarias para a súa aplicación na resolución de problemas de Enxeñaría Civil.		В3	C3	
		B4	C4	
		B5	C5	
		B6	C	
		B7	C7	
		B8	C	
		B9	C	
		B10	C1	
		B11	C1	
		B12	C1	
		B13	C1	
		B14	C1	
		B15	C1	
			C1	

Contenidos	
Tema	Subtema

1 Ecuaciones Diferenciales de Primer Orden

- 1.1. Introducción
- 1.1.1. Concepto de ecuación diferencial ordinaria, orden y grado.
- 1.1.2. Modelación de los fenómenos de la naturaleza en términos de ecuaciones matemáticas. Ecuaciones algebraicas, diferenciales y funcionales
- 1.1.3. Origen del cálculo diferencial: Newton y Leibniz
- 1.1.4. Ejemplos de problemas de la Ingeniería Civil susceptibles de ser escritos en términos de EDOs: Pandeo de pilares, movimiento oscilatorio en chimeneas de equilibrio, torsión mixta, problema de la catenaria, vibración de sistemas mecánicos de muelles,...
- 1.2. Soluciones generales y soluciones particulares. Problema de Cauchy y problema inverso.
- 1.3. Integración de ecuaciones diferenciales: Métodos analíticos, gráficos y numéricos
- 1.4. Teorema de existencia de unicidad de soluciones de EDOs de primer orden
- 1.4.1 El método de las aproximaciones sucesivas de Picard
- 1.4.2. Teorema de Picard para ecuaciones diferenciales de primer orden
- 1.5. Ecuaciones diferenciales en variables separadas
- 1.6. Ecuaciones diferenciales homogéneas
- 1.6.2. Funciones homogéneas
- 1.6.3. Solución de ecuaciones diferenciales homogéneas
- 1.7. Ecuaciones diferenciales reducibles a homogéneas
- 1.8. Ecuaciones diferenciales exactas
- 1.9. Resolución de ecuaciones diferenciales mediante el uso de factores de integración
- 1.9.2. Factores de integración que dependen de x
- 1.9.3. Factores de integración que dependen de y
- 1.9.4. Factores de integración que dependen de
- 1.10. Ecuación diferenciales lineales
- 1.11. Ecuación diferencial de Bernouilli
- 1.12. Ecuación diferencial de Ricatti
- 1.13. Ejemplos de aplicación: Problemas geométricos, de vaciado de depósitos, problemas dinámicos, de disolución de sustancias, problemas termodinámicos y de persecuciones.
- 1.14. Ecuaciones no explícitas en la derivada
- 1.14.2. Ecuaciones resolubles en
- 1.14.3. Ecuaciones resolubles en y
- 1.14.4. Ecuaciones resolubles en x
- 1.14.5. Ecuaciones de Lagrange
- 1.14.6. Ecuación de Clairaut
- 1.15. Curvas y Trayectorias
- 1.15.2. Trayectorias ortogonales e isogonales a un haz de curvas en coordenadas cartesianas
- 1.15.3. Trayectorias ortogonales e isogonales a un haz de curvas en coordenadas polares
- 1.15.4. Curvas paralelas a una curva dada
- 1.15.5. Curvas evolventes a una dada
- 1.15.6. Curvas envolventes a una familia dada
- 1.15.7. Problemas geométricos, algunas curvas planas notables: Lemniscata de Bernoulli, Cardiode, Hipocicloide, Cisoide de Diocles, Caracol de Pascal, Óvalos de Cassini
- 1.15.8. Aplicación a problemas relacionados con la ingeniería: Curvas de flujo a

través de una presa de materiales sueltos, parábolas de seguridad, curvas de flujo eléctrico entre dos cargas de igual magnitud y signo opuesto,...

2 Ecuaciones Diferenciales de Orden Superior

- 2.1. Ecuaciones diferenciales lineales
- 2.1.1. Concepto. Ecuación homogénea y ecuación completa
- 2.1.2. Aplicación a la resolución de problemas de la física matemática
- 2.1.3. Métodos de resolución de las ecuaciones diferenciales lineales
- 2.1.4. Teorema de existencia y unicidad de las ecuaciones lineales: Enunciación
- 2.2. Ecuaciones lineales de orden dos
- 2.2.1. Teorema de superposición
- 2.2.2. Solución general de la ecuación diferencial lineal homogénea de orden dos
- 2.2.3. Obtención de la segunda solución a partir de la primera
- 2.2.4. Solución general de la ecuación completa
- 2.2.5. Obtención de la solución particular: Método de la variación de parámetros
- 2.3. Ecuaciones lineales de orden n
- 2.3.1. Teorema de superposición
- 2.3.2. Solución general de la ecuación diferencial lineal de orden n homogénea
- 2.3.3. Solución general de la ecuación diferencial lineal de orden n completa
- 2.3.4. Ecuación lineal homogénea con coeficientes constantes
- 2.3.4.1. Ecuación característica
- 2.3.4.2. Raíces reales y simples
- 2.3.4.3. Raíces reales y múltiples
- 2.3.4.4. Raíces complejas y simples
- 2.3.4.5. Raíces complejas y múltiples
- 2.3.5. Obtención de soluciones particulares
- 2.3.5.1. Método de los Coeficientes Indeterminados
- 2.3.5.2. Método de la Variación de Parámetros
- 2.3.5.3. Métodos Operacionales de Heaviside
- 2.3.5.3.1. Generalidades
- 2.3.5.3.2. Método de las Integraciones Sucesivas
- 2.3.5.3.3. Método de la Descomposición en Fracciones Simples
- 2.3.5.3.4. Método del Desarrollo en Serie de Operadores Polinómicos
- 2.3.5.3.5. Regla del Desplazamiento Exponencial
- 2.4. La ecuación de Euler-Cauchy
- 2.4.1. Ecuación característica asociada a la ecuación de Euler-Cauchy
- 2.4.2. Raices reales y simples
- 2.4.3. Raíces reales y múltiples
- 2.4.4. Raíces complejas y simples
- 2.4.5. Raíces complejas y múltiples
- 2.5. Resolución de otras ecuaciones de orden n no lineales
- 2.5.1. Ecuaciones de segundo orden en las que no aparece y
- 2.5.2. Ecuaciones de segundo orden en las que no aparece x
- 2.5.3. Ecuaciones de orden n en las que no aparecen
- 2.6. Resolución de problemas de vibraciones libres y forzadas, con y sin amortiguamiento, resonancia y pulsación: Sistemas mecánicos de muelles, oscilaciones en chimeneas de equilibrio, principio de Arquímedes, péndulos,...
- 2.7. Problemas de aplicación: geométricos, mecánicos, eléctricos, cinemáticos,...
- 2.8. Problemas de ingeniería civil susceptibles de ser resueltos mediante la integración de una ecuación diferencial de orden superior a uno: Cables pesados, antifunicularidad, arcos,...

4 Sistemas de ecuaciones diferenciales

- 4.1. Introducción a los Sistemas de Ecuaciones Diferenciales
- 4.1.1. Concepto de Sistema de Ecuaciones Diferenciales Ordinarias. Problemas de valor inicial
- 4.1.2. Sistemas de ecuaciones lineales de orden n con m ecuaciones e incógnitas
- 4.1.3. Reducción de una ecuación de orden n a un sistema de n ecuaciones e incógnitas de primer orden
- 4.1.4. Reducción de un sistema de orden n y m ecuaciones e incógnitas, a uno de primer orden con n?m ecuaciones e incógnitas
- 4.2. Obtención de la solución general de un sistema lineal de orden uno
- 4.2.1. Teorema de superposición de soluciones de sistemas homogéneos
- 4.2.2. Solución general de un sistema homogéneo. Matriz Fundamental de Soluciones
- 4.2.3. Solución general de un sistema completo
- 4.3. Obtención de la solución general de sistemas de ecuaciones diferenciales lineales homogéneos y de coeficientes constantes
- 4.3.1. Método de la Transformada de Laplace
- 4.3.2. Método de Eliminación
- 4.3.3. Método de Euler o de los Valores Propios
- 4.3.3.1. Introducción
- 4.3.3.2. Autovalores reales y simples
- 4.3.3.3. Autovalores complejos y simples
- 4.3.3.4. Autovalores reales y múltiples
- 4.3.3.4.1. Defecto nulo
- 4.3.3.4.2. Defecto mayor ó igual a uno. Concepto de Autovectores Generalizados
- 4.4. Obtención de la solución particular de Sistemas de Ecuaciones Diferenciales Completos
- 4.4.1. Método de la Variación de Parámetros
- 4.4.2. Método de los Coeficientes Indeterminados
- 4.5. Sistemas de Ecuaciones Diferenciales de Euler-Cauchy
- 4.6. Problemas de Aplicación: Problemas de depósitos, problemas mecánicos y eléctricos, problemas geométricos: curvas epicicloide, hipocicloide y cicloide

UNIVERSIDADE	DA	CORUNA

5 Transformada de Laplace

- 5.1. Definición de la Transformada de Laplace y de la Función Gamma
- 5.1.1. Definición de la Transformada de Laplace
- 5.1.2. Concepto de convergencia de la Transformada de Laplace
- 5.1.3. Aplicación de la Transformada de Laplace a la resolución de EDOs. Analogía con la resolución de EDOs en Series de Potencias
- 5.1.4. La Función Gamma
- 5.1.5. Transformada de Laplace de funciones elementales
- 5.2. Teorema de existencia de la Transformada de Laplace. Transformada inversa y linealidad
- 5.2.1. Concepto de función continua por partes y de función de orden exponencial
- 5.2.2. Teorema de existencia de la Transformada de Laplace
- 5.2.3. Teorema de unicidad de la transformada inversa
- 5.2.4. Teorema de linealidad de la Transformada de Laplace
- 5.3. Cambio de escala y traslaciones. Función Escalón Unitario de Heaviside y Función Delta de Dirac
- 5.3.1. Cambio de escala en t. Compresiones y dilataciones
- 5.3.2. Traslación a lo largo de s
- 5.3.3. Función Escalón Unitario de Heaviside. Transformada
- 5.3.4. Traslación a lo largo de t
- 5.3.5. Función Delta de Dirac. Transformada
- 5.4. Derivadas e Integrales
- 5.4.1. Trasformada de la primera derivada y de las derivadas sucesivas
- 5.4.2. Transformada de una integral
- 5.4.3. Derivada de la transformada
- 5.4.4. Integración de la transformada
- 5.5. Transformada de una función periódica
- 5.6. Producto de convolución
- 5.6.1. Definición del producto de convolución de dos funciones
- 5.6.2. Propiedades del producto de convolución
- 5.7. Aplicación de la Transformada de Laplace a la integración de EDOs
- 5.7.1. Problemas de valor inicial. Ecuaciones y sistemas
- 5.7.2. Obtención de transformadas inversas por descomposición en fracciones simples y producto de convolución
- 5.7.3. Aplicación a la resolución de problemas físicos con funciones escalón y funciones impulso, problemas eléctricos y mecánicos,...

۵	Posol	ución	d0 E		on So	rios de	Poter	oioc
n	Resol	ucion	ae E	-1)()S	en Se	ries ne	2 POTER	าตาลจ

- 6.1. Introducción
- 6.1.1. Justificación del uso de las Series de Potencias en la resolución de EDOs
- 6.1.2. Convergencia de Series de Potencias
- 6.1.3. Radio de convergencia
- 6.1.4. Funciones analíticas
- 6.2. Solución en Serie de Potencias de EDO de primer orden
- 6.2.1. El principio de identidad: enunciación
- 6.2.2. Procedimiento de obtención de soluciones en Serie de Potencias para ecuaciones de primer orden
- 6.3. Solución en Serie de Potencias de EDO de segundo orden
- 6.3.1. Puntos ordinarios y singulares
- 6.3.2. Teorema de existencia de soluciones en Serie de Potencias alrededor de puntos ordinarios: Enunciación
- 6.3.3. Procedimiento de obtención de soluciones en Serie de Potencias alrededor de puntos ordinarios
- 6.3.4. Ecuación diferencial de Legendre
- 6.3.4.1. Obtención de la solución de la Ecuación de Legendre en Serie de Potencias
- 6.3.4.2. Polinomios de Legendre
- 6.3.4.3. Fórmula de Rodrigues
- 6.3.5. Puntos singulares regulares
- 6.3.6. Teorema de existencia de soluciones en Serie de Frobenius: enunciación
- 6.3.7. Obtención de soluciones de EDOs en Serie de Potencias alrededor de puntos singulares regulares: Método de Frobenius
- 6.3.8. Ecuación Diferencial de Bessel
- 6.3.8.1. Ecuación Diferencial de Bessel de orden & amp; #61550;
- 6.3.8.2. Resolución de la Ecuación Diferencial de Bessel en Serie de Potencias
- 6.3.8.3. Funciones de Bessel de primera y segunda especie
- 6.3.8.4. La Ecuación Diferencial de Bessel de orden 0
- 6.3.8.5. Ecuación Diferencial de Bessel de segunda especie
- 6.3.9. Resolución en Serie de Potencias de las Ecuaciones de Chebyshev, Laguerre,
- Airy, Hermite, hipergeométrica de Gauss, hipergeométrica de Kummer
- 6.3.10. Aplicación a la resolución de problemas mecánicos, térmicos, pandeo de pilares,...

7 RESOLUCIÓN DE EDOS EN SERIES DE FUNCIONES ORTOGONALES. SERIES DE FOURIER. PROBLEMAS DE CONTORNO

- 7.1. Funciones ortogonales
- 7.1.1. Concepto de funciones ortogonales
- 7.1.2. Norma de una función y funciones ortonormales
- 7.1.3. Series Generalizadas de Fourier
- 7.1.4. Determinación de los coeficientes generalizados de Fourier
- 7.1.5. Funciones ortogonales con respecto de una función de ponderación
- 7.2. Problemas de contorno. El problema de Sturm-Liouville
- 7.2.1. El problema de Sturm-Liouville. Autovalores y autofunciones
- 7.2.2. Teorema de Ortogonalidad
- 7.2.3. Carácter real de los valores propios
- 7.2.4. Estudio de la ortogonalidad de los polinomios de Hermite, Laguerre, Legendre y Chevyshev
- 7.2.5. Resolución de problemas de contorno que surgen en la teoría del cálculo de estructuras. Determinación de las cargas críticas de Euler
- 7.3. Series de Fourier
- 7.3.1. Concepto de Serie de Fourier y aplicación a la resolución de EDOs
- 7.3.2. Series de Fourier de funciones de periodo y 2L
- 7.3.3. Determinación de los coeficientes de Fourier
- 7.3.4. Teorema de Convergencia de las Series de Fourier
- 7.3.5. Series de Fourier de funciones pares e impares
- 7.3.6. Extensiones pares e impares de funciones no periódicas
- 7.3.7. Forma compleja de las series de Fourier
- 7.3.8. Solución de EDOs en serie de Fourier. Resonancia
- 7.3.9. Resolución de problemas diferenciales geométricos, mecánicos y eléctricos mediante las series de Fourier
- 7.3.10. Aplicación de las SF a la resolución de problemas relacionados con la Ingeniería Civil: deformación de placas, torsión mixta, alabeo de secciones
- 7.4. Introducción a la Transformada de Fourier
- 7.4.1. Extensión del concepto de Serie de Fourier a funciones no periódicas
- 7.4.2. Integral de Fourier
- 7.4.3. Teorema de la Integral de Fourier. Enunciación
- 7.4.4. Transformada del seno de Fourier
- 7.4.5. Transformada del coseno de Fourier
- 7.4.6. La Transformada de Fourier
- 7.4.6.1. Forma compleja de la Integral de Fourier
- 7.4.6.2. Transformada de Fourier

	Planificac	ión		
Metodologías / pruebas	Competéncias	Horas presenciales	Horas no presenciales / trabajo autónomo	Horas totales
Sesión magistral	A1 B8 B9 B10 B11	60	60	120
	B12 B13 B14 B15 B1			
	B2 B3 B4 B5 B6 B7			
	C1 C2 C3 C4 C5 C6			
	C7 C8 C9 C10 C11			
	C12 C13 C14 C15			
	C16 C17 C18 C19			

	C13 C14 C13 C10			
	C13 C14 C15 C16			
	C8 C9 C10 C11 C12			
	C2 C3 C4 C5 C6 C7			
	B12 B13 B14 B15 C1			
	B6 B7 B8 B9 B10 B11			
Prueba mixta	A1 B1 B2 B3 B4 B5	0	5	5
	C4 C3 C2 C1			
	C10 C9 C8 C7 C6 C5			
	C14 C13 C12 C11			
	C18 C17 C16 C15			
	B5 B4 B3 B2 B1 C19			
	B11 B10 B9 B8 B7 B6			
Seminario	A1 B15 B14 B13 B12	90	0	90

	Metodologías
Metodologías	Descripción
Sesión magistral	Estas clases constituyen el cuerpo principal del ejercicio docente y estarán dedicadas tanto a la exposición de los temas
	estrictamente teóricos relacionados con la asignatura, como a la resolución de ejercicios y problemas de clase. La distribució
	temporal de las clases teóricas y prácticas irá variando dentro del horario docente en función de los requerimientos de cada
	tema, y será en cualquier caso adelantada a los alumnos para su mayor comodidad.
	En cuanto a las clases teóricas, estas serán expuestas con la mayor claridad y concreción posible. Durante su exposición, se
	atenderá en particular al nivel de conocimientos que el alumno posee en el momento de exponerle los distintos particulares
	del temario, para completar en su caso algún aspecto que, aunque no siendo estrictamente materia de la signatura, pueda
	constituir una laguna en los conocimientos del colectivo de estudiantes.
	Considero muy importante en cualquiera de las clases que se imparten, el hecho de comenzar y finalizar las clases con
	puntualidad, lo cual contribuye a afianzar la relación de respeto con los alumnos. También se intenta en la medida de lo
	posible exponer los temas en un tono distendido, cordial. A cambio, se solicita por parte de los alumnos una actitud positiva,
	atenta y activa. Se insiste a los alumnos periódicamente sobre la posibilidad de existencia de alguna duda.
	Todas las exposiciones se realizarán en la pizarra, salvo en el caso de alguna cuestión muy particular, como la explicación
	de códigos de programación de cierta extensión, en cuyo caso se utilizará la proyección de transparencias. Durante las
	exposiciones en la pizarra se cuidará de la claridad y del tamaño de la escritura, y se utilizarán las tizas de color,
	especialmente cuando se reproduzcan gráficos.

Seminario	Se ha denominado seminario a aquellas clases prácticas cuyo objetivo consiste en la resolución de las Hojas de Problemas.
	A lo largo del desarrollo de la asignatura se facilitará a los alumnos nueve Hojas de Problemas como parte del material
	docente de la asignatura. Dichas hojas se publican además en la página web de la asignatura. El título de cada una de dichas
	Hojas de Prácticas y Problemas es el siguiente:
	Hoja 1. EDOs resueltas en la derivada
	Hoja 2. EDOs no resueltas en la derivada. Curvas y Trayectorias
	Hoja 3. Ecuaciones diferenciales de orden superior a 1
	Hoja 5. Sistemas de Ecuaciones Diferenciales
	Hoja 6. Transformada de Laplace
	Hoja 7. Series de Potencias
	Hoja 8. Funciones Ortogonales y Problemas de Contorno
	Hoja 9. Series de Fourier
	Las Hojas de Prácticas constituyen una colección de problemas de la asignatura que contienen problemas con el grado de
	dificultad de los que se proponen en los exámenes. Los ejercicios que forman estas hojas se resuelven durante las clases prácticas.
	Cada una de las Hojas de Problemas están constituidas por cinco ejercicios de nivel de examen, para los que se propone un
	plazo de entrega y que tras su corrección son devueltos a los alumnos. La realización de las Hojas de Problemas forma parte
	de la evaluación de la asignatura.
	Dentro de las Hojas de Prácticas y Problemas se incluye un buen número de ejercicios de aplicación de la resolución de
	Ecuaciones Diferenciales a distintos problemas de ingeniería.
	Al igual que en el caso de las clases teóricas, esta exposición se desarrollará en la pizarra. Se facilita a los alumnos un
	tiempo para que puedan platearse el problema antes de su resolución en la pizarra. Durante estas clases se hará especial
	hincapié en la necesidad de preguntar todas las dudas que se planteen.
Prueba mixta	Realización de un examen escrito, con libros y apuntes que estará constituído por un total de cinco ejercicios.

Atención personalizada			
Metodologías	Descripción		
Seminario	Será muy conveniente el desarrollo de tutorias para la elaboración de las hojas de problemas para conseguir así una correcta		
Prueba mixta	evolución en la asignatura		

Evaluación			
Metodologías	Competéncias	Descripción	Calificación
Seminario	A1 B15 B14 B13 B12	Hojas de problemas (8)	5
	B11 B10 B9 B8 B7 B6		
	B5 B4 B3 B2 B1 C19		
	C18 C17 C16 C15		
	C14 C13 C12 C11		
	C10 C9 C8 C7 C6 C5		
	C4 C3 C2 C1		
Prueba mixta	A1 B1 B2 B3 B4 B5	Examen escrito	95
	B6 B7 B8 B9 B10 B11		
	B12 B13 B14 B15 C1		
	C2 C3 C4 C5 C6 C7		
	C8 C9 C10 C11 C12		
	C13 C14 C15 C16		
	C17 C18 C19		

Otros				
	Observaciones evaluación			
	Fuentes de información			
Básica	- Edwards C.H., Penney D.E. (1994). Ecuaciones Diferenciales Elementales y Problemas con Condiciones en la Frontera. Prentice Hall Hispanoamericana. Méjico			
	- Kreyszig E. (1993). Advanced Engineering Mathematics . Wiley. Nueva York			
	- Simmons G. F. (1993). Ecuaciones Diferenciales. Con Aplicaciones y Notas Históricas. McGraw-Hill. Madrid			
	- Vellando P. (2002). Colección de problemas resueltos de ecuaciones diferenciales. CopyBelén. Santiago			
	- Vellando P. (2005). Problemas de ecuaciones diferenciales. Aplicaciones a la ingeniería. CopyBelén. Santiago			
	- Zill D.G. (2002). Ecuaciones Diferenciales con Aplicaciones de Modelado. International Thomson Editores. Méjico			
	- Puig Adam P. (1980). Ecuaciones diferenciales . Nuevas Gráficas			
Complementária				

Recomendaciones
Asignaturas que se recomienda haber cursado previamente
Cálculo infinitesimal I/632G02001
Cálculo infinitesimal II/632G02002
Física aplicada I/632G02004
Física aplicada II/632G02005
Álgebra lineal I/632G02007
Álgebra lineal II/632G02008
Asignaturas que se recomienda cursar simultáneamente
Asignaturas que continúan el temario
Otros comentarios

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías