		Teaching Guide		
	Identifying	Data		2017/18
Subject (*)	Thermo-mechanical fatigue		Code	730495008
Study programme	Mestrado Universitario en Materiais	Complexos: Análise Térmica	e Reoloxía (plan 2012)	'
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degree	e 2nd four-month period	First	Optativa	2
Language	English	<u>'</u>		'
Teaching method	Face-to-face			
Prerequisites				
Department	Enxeñaría Naval e IndustrialMatem	aticas		
Coordinador	Tarrio Saavedra, Javier E-mail javier.tarrio@udc.es			
Lecturers	Tarrio Saavedra, Javier E-mail javier.tarrio@udc.es			c.es
	Zaragoza Fernandez, Maria Sonia		sonia.zaragoza1	@udc.es
Web				
General description	This course aims to describe the ba	asics to fatigue taking into acco	ount both mechanical an	d thermal effects (resistance,
	voltage, damage, growth / propagat	tion of fractures, ?)		

	Study programme competences / results
Code	Study programme competences / results
A1	Set up and conduct tests using the techniques of thermal analysis and rheology most appropriate in each case, within the scope of
	complex materials
А3	Knowing the different types of thermal and rheological behaviors of the materials
A6	Understanding the importance of the environment and of the research focused on the elimination/minimization of final or process wastes
A7	Knowing the different types of thermal thermo-mechanical behaviors in materials subjected to fatigue
A8	Understand and quantify the damage caused by thermomechanical fatigue in materials
B2	The students have the skill to apply their knowledge and their ability to solve problems in new or unfamiliar contexts within broader (or
	multidisciplinary) contexts related to their field of study
B4	That the students can communicate their conclusions and the knowledge and last reasons behind that conclusions to specialized and non
	specialized audience in a clear and unambiguous way
B7	Solving problems effectively
B10	Working in a collaborative way
B13	Analysis-oriented attitude
C2	Have a good command of spoken and writing expression and understanding of a foreign language.
C6	Critically assessing the knowledge, technology and information available to solve the problems they face with.
C7	To assume as a professional and citizen the importance of learning throughout life.
C8	To assess the importance of research, innovation and technological development in the socio-economic and cultural progress of society.

Learning outcomes			
Learning outcomes		Study programme	
	con	npetenc	es/
		results	
To know and evaluate the thermal / mechanical fatigue performance of materials	AR1	BR2	CR6
	AR7	BR4	CR8
		BR7	
To know and evaluate the thermal / mechanical fatigue performance of materials	AR7	BR7	CR6
	AR8	BR10	CR7
		BR13	CR8

Understand and quantify the damage caused by thermomechanical fatigue in materials	AR1	BR7	CR2
Onderstand and quantity the damage caused by thermomechanical latigue in materials	AKI	DK/	CRZ
	AR3	BR10	CR6
	AR6	BR13	
	AR7		
	AR8		
Understand and quantify the damage caused by thermomechanical fatigue in materials	AR1	BR2	
	AR7	BR4	
	AR8	BR13	

	Contents	
Topic Sub-topic		
The following blocks or topics develop the contents	1. Basic Introduction of Fatigue: Fatigue Resistance. Fatigue Voltage Parameters.	
established in the Verification Report, which are:	Fatigue loads.	
	2. Mechanical Fatigue: Fatigue tests. Resistance curves. Factors that affect the	
	fatigue life.	
	3. Thermal Fatigue: Tensions and thermal deformations. Propagation and growth of	
	cracks. Microstructural changes.	
Introduction to fracture mechanics	1.1. Fracture	
	1.2. Fatigue	
	1.2.1. S-N curves	
	1.3. Creep	
2. Fatigue	2.1. Fatigue parameters	
	2.2. HCF	
	2.3. LCF	
	2.4. Paris equation	
3. Thermal fatigue	3.1. Thermal stress and strain	
	3.2. Crack growth and propagation	
4. Fatigue of complex materials	4.1. Fatigue of complex materials	
	4.2. Thermomechanical and dynamic mechanical analysis	

	Planning	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A3 A6 A7 A8 B4	8	8	16
	B7 B13 C6 C7 C8			
Supervised projects	B2 B4 B7 B10 B13 C2	4	12	16
	C6 C7 C8			
Objective test	A3 A7 A8 B2 B4 B7	1	2	3
	C2 C6			
Laboratory practice	A1 A3 A6 A7 A8 B2	7	7	14
	B10 B13			
Personalized attention		1	0	1

Methodologies		
Methodologies	Description	
Guest lecture /	Presentation by the teacher of the concepts contained in the agenda of the subject.	
keynote speech		

Supervised projects	You can choose one of the following options:
	a) Performing a Bibliographical search in relation to recent research in the field related to the subject.
	b) Research using laboratory equipment.
	c) Simulation and modelization of fatigue processes by computer programs.
Objective test	Evaluation test
Laboratory practice	Practical activities such as computer practice, exercises, experiments, research, etc.

	Personalized attention		
Methodologies	Description		
Guest lecture /	Resolution of questions regarding any aspect of the subject.		
keynote speech			
Supervised projects			
Laboratory practice			

		Assessment	
Methodologies Competencies /		Description	
	Results		
Objective test	A3 A7 A8 B2 B4 B7	In this test will be a test to assess the assimilation by students of the fundamental	20
	C2 C6	concepts	
Guest lecture /	A1 A3 A6 A7 A8 B4	Continuous assessment through monitoring of student work in the classroom,	10
keynote speech	B7 B13 C6 C7 C8	laboratory and / or tutorials	
Supervised projects	B2 B4 B7 B10 B13 C2	Report will be assessed in relation to the work suggested to the student	40
	C6 C7 C8		
Laboratory practice	A1 A3 A6 A7 A8 B2	Continuous assessment through monitoring of student work in the classroom,	30
	B10 B13	laboratory and / or tutorials	

Assessment comments	

	Sources of information
Basic	- Weronski A., Hejwowski T. (1991). Thermal fatigue of metals.
	- Callister, W.D. (2007). Materials Science and Engineering. John Wiley & Dons
	- Bresser J., Rémy L. (1995). Fatigue under thermal and mechanical loading.
	- Prime B., Menczel J. (2009). Thermal Analysis of Polymers, Fundamentals and Applications.
	- Strait, L. (1994). Thermo-mechanical fatigue of polymer matrix composites.
Complementary	

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.