		Teaching Guide		
	Identifying	Data		2022/23
Subject (*)	Kinematics and Dynamics of Industrial Robots Code			730497228
Study programme	Mestrado Universitario en Enxeñaría	a Industrial (plan 2018)	'	
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degre	e 2nd four-month period	Second	Optional	3
Language	Spanish			
Teaching method	Face-to-face			
Prerequisites				
Department	Enxeñaría Naval e Industrial			
Coordinador	Ramil Rego, Alberto E-mail alberto.ramil@udc.es			
Lecturers	Ramil Rego, Alberto E-mail alberto.ramil@udc.es			udc.es
Web		'	,	
General description	Acquire the basic knowledge that all	ows a kinematics and dy	ynamics of robotic manipulat	ors. Develop applications using
	computer tools.			

	Study programme competences
Code	Study programme competences
B1	CB6 - Possess and understand knowledge that provides a basis or opportunity to be original in the development and / or application of ideas, often in a research context.
B2	CB7 - That students know how to apply the knowledge acquired and their ability to solve problems in new or unfamiliar environments
	within broader (or multidisciplinary) contexts related to their area of ??study.
B6	G1 - Have adequate knowledge of the scientific and technological aspects in Industrial Engineering.
B13	G8 - Apply the knowledge acquired and solve problems in new or unfamiliar environments within broader and multidisciplinary contexts.
C1	ABET (a) - An ability to apply knowledge of mathematics, science, and engineering.
C3	ABET (c) - An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,
	environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
C8	ABET (h) - The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
C11	ABET (k) - An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Learning outcomes			
Learning outcomes	Study	/ progra	amme
	cor	npeten	ces
Acquire the basic knowledge that allows a kinematics and dynamics of robotic manipulators.		BJ1	CJ1
		BJ2	CJ11
		BJ6	
		BJ13	
Develop applications using computer tools.		BJ2	CJ3
		BJ13	CJ8
			CJ11

Contents		
Topic	Sub-topic	

1. Introduction	1.1 Introduction
	1.2 Classification of manipulators
	1.3 Rotation matrices. Representation by means of axis-angle; Angles
	(Roll-Pitch-YaW); Euler angles and quaternions.
	1.4 Homogeneous transformations.
	1.5 Composition of transformations
2. Direct Kinematics	2.1 Direct Kinematics.
	2.2 Denavit-Hartenberg Convention.
	2.3 Obtaining transformation matrices.
	2.4 Speeds and rotations.
	2.5 Jacobian of the manipulator.
	2.6 Singularities.
3. Manipulator Dynamics	3.1 Dynamics of the manipulator.
	3.2 Newton-Euler and Euler-Lagrange equations.
	3.3 Movement control.
4. Reverse Kinematics.	4.1 Reverse Kinematics.
	4.2 Ambiguities.
	4.3 Application to an arm with 6 DOF.

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	B6 C1 C8 C11	8	16	24
Problem solving	B13 B6 C1 C11	4	12	16
ICT practicals	B1 B2 B13 C3 C11	6	12	18
Supervised projects	B1 B2 B13 B6 C1 C3	3	12	15
	C11			
Personalized attention		2	0	2

	Methodologies
Methodologies	Description
Guest lecture /	Oral presentation complemented with the use of audiovisual media to develop the program of the subject and make
keynote speech	explanations and examples that allow the understanding of the principles of the subject to be able to apply them to practical
	examples.
Problem solving	Resolution of problems corresponding to the different subjects of the program in order to understand the theoretical principles
	and know their practical application, comparing different methods highlighting the advantages of each.
ICT practicals	Application of various computer applications to facilitate calculations in solving problems and illustrate the results with
	simulations of movements of different manipulators.
Supervised projects	Objective test of resolution of a practical case of development of an application with the robot that allows a continuous
	evaluation of the degree of acquisition of the different competences including theoretical knowledge and the use of different
	computer applications. The student must follow a series of steps that will be supervised by the teacher, delivering each of
	them in electronic format.

	Personalized attention
Methodologies	Description

ICT practicals	It is recommended that all students attend tutorials to clarify issues related to the session as well as the solution of problems
Problem solving	and supervised project.
Supervised projects	
Guest lecture /	
keynote speech	

	Assessment			
Methodologies	Competencies	Description	Qualification	
Problem solving	B13 B6 C1 C11	Orally and/or written presentation of problems proposed.	20	
Supervised projects	B1 B2 B13 B6 C1 C3	Delivery in electronic format of the solution of the different steps of the practical work.	80	
	C11			

Methodologies	Competencies	Description	Qualification
Problem solving	B13 B6 C1 C11	Orally and/or written presentation of problems proposed.	20
Supervised projects	B1 B2 B13 B6 C1 C3	Delivery in electronic format of the solution of the different steps of the practical work.	80
	C11		

Assessment comments

Only

students who do not deliver the supervised work will be classified as NOT PRESENTED.

Academic

dispensation is not allowed in this matter.

The

evaluation criteria for the 2nd chance are the same as for the 1st chance.

The

evaluation criteria of the advanced call will be the same as those of the 1st opportunity.

The

fraudulent performance of the tests or evaluation activities will directly imply the qualification of failure 0 in the matter in the corresponding call, thus invalidating any qualification obtained in all the evaluation activities for the extraordinary call

	Sources of information
Basic	- Mark W. Spong, M. Vidyasagar (2006). Robot dynamics and control John Wiley & Dons. New York
	- Corke, Peter. (2017). Robotics, vision and control : fundamental algorithms in MATLAB Springer
	- Siciliano, Bruno; et al. (2010). Robotics : modelling, planning and control. Advanced textbooks in control and signal
	processing. Springer
	- Kevin Lynch, Frank C. Park (2017). Modern robotics : mechanics, planning, and control. Cambridge University Pres
	- Carl D. Crane III and Joseph Duffy (1998). Kinematic analysis of robot manipulators Cambridge University Press

Complementary	- Tadej Bajd, Matjaz Mihelj, Marko Munih (2013). Introduction to robotics Dordrecht: Springer
	- Siciliano, Bruno; Khatib, Oussama (2008). Springer handbook of robotics. Springer
	- Craig, John J. (2005). Introduction to robotics: mechanics and control Pearson Educacion Internacional
	- Asada, Haruhiko; Slotine, Jean-Jacques E. (1986). Robot analysis and control New York: John Wiley and sons
	- Thomas R. Kurfess (2004). Robotics and Automation Handbook 1st Edition CRC Press

Recommendations	
Subjects that it is recommended to have taken before	
Biomechanics/730497227	
Subjects that are recommended to be taken simultaneously	
Subjects that continue the syllabus	
Other comments	
<p>lt must make a sustainable use of resources and the prevention of negative impacts on the natural environment.</p>	

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.