

		Teaching Gui	de			
	Identifyir	ng Data			2023/24	
Subject (*)	Introduction to Machine Learning Code			730497240		
Study programme	Mestrado Universitario en Enxeñaría Industrial (plan 2018)				1	
		Descriptors				
Cycle	Period	Year		Туре	Credits	
Official Master's Degre	e 2nd four-month period	Second		Optional	4.5	
Language	SpanishGalician					
Teaching method	Face-to-face					
Prerequisites						
Department	Ciencias da Computación e Tecn	oloxías da Informació	ónComputació	òn		
Coordinador	Bellas Bouza, Francisco Javier		E-mail	francisco.bellas	@udc.es	
Lecturers	Bellas Bouza, Francisco Javier		E-mail	francisco.bellas@udc.es		
	Mallo Casdelo, Alma María			alma.mallo@udc.es		
Web		i		I		
General description	This course provides an introduct	tion to the computatio	nal automatic	learning techniques	most commonly used in the field	
	of industrial engineering. It will pro-	ovide an overview of	the field of ma	achine learning to un	derstand what types of problems	
	are solved and with what technique	ues, with the aim of p	roviding the s	tudent with a general	knowledge on the scope of	
	application of them.					

	Study programme competences
Code	Study programme competences
A8	ETI8 - Ability to design and project automated production systems and advanced process control.
B1	CB6 - Possess and understand knowledge that provides a basis or opportunity to be original in the development and / or application of
	ideas, often in a research context.
B2	CB7 - That students know how to apply the knowledge acquired and their ability to solve problems in new or unfamiliar environments
	within broader (or multidisciplinary) contexts related to their area of ??study.
B3	CB8 - That students are able to integrate knowledge and face the complexity of making judgments based on information that, being
	incomplete or limited, includes reflections on the social and ethical responsibilities linked to the application of their knowledge and
	judgments.
B4	CB9 - That the students know how to communicate their conclusions -and the knowledge and ultimate reasons that sustain them- to
	specialized and non-specialized audiences in a clear and unambiguous way.
B5	CB10 - That students have the learning skills that allow them to continue studying in a way that will be largely self-directed or autonomou
B6	G1 - Have adequate knowledge of the scientific and technological aspects in Industrial Engineering.
B13	G8 - Apply the knowledge acquired and solve problems in new or unfamiliar environments within broader and multidisciplinary contexts.
B14	G9 - Be able to integrate knowledge and face the complexity of making judgments based on information that, being incomplete or limited,
	includes reflections on social and ethical responsibilities linked to the application of their knowledge and judgments.
B15	G10 - Knowing how to communicate the conclusions -and the knowledge and ultimate reasons that sustain them- to specialized and
	non-specialized publics in a clear and unambiguous way.
B16	G11 - Possess the learning skills that allow to continue studying in a self-directed or autonomous way.
C1	ABET (a) - An ability to apply knowledge of mathematics, science, and engineering.
C3	ABET (c) - An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,
	environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
C6	ABET (f) - An understanding of professional and ethical responsibility.
C7	ABET (g) - An ability to communicate effectively.
C8	ABET (h) - The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and
	societal context.
C9	ABET (i) - A recognition of the need for, and an ability to engage in life-long learning.
C11	ABET (k) - An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Learning outcomes			
Learning outcomes	Stud	y progra	amme
	со	mpeten	ces
Coñecer as principais técnicas de clasificación supervisada e non supervisada, e o seu uso práctico	AJ8	BJ1	CJ1
		BJ2	CJ3
		BJ6	
		BJ13	
Know the non-resolved problems in autonomous robotics	AJ8	BJ1	CJ1
		BJ4	CJ3
		BJ6	CJ11
		BJ13	
		BJ14	
Know the problems of sensing and actuation in systems that operate in the real world and real time	AJ8	BJ1	CJ1
		BJ4	CJ3
		BJ6	CJ11
		BJ13	
		BJ14	
Know the problems of knowledge representation in autonomous robotics		BJ1	CJ1
		BJ4	CJ6
		BJ5	CJ7
		BJ6	CJ8
		BJ14	
		BJ16	
Know the problems to tackle when an autonomous robotic control system is developed		BJ1	CJ3
		BJ2	CJ6
		BJ3	CJ7
		BJ13	CJ8
		BJ14	CJ9
		BJ15	CJ11

	Contents
Торіс	Sub-topic
Introduction	Preliminary concepts.
	Types of problems: classification, regression, clustering, anomaly detection, etc.
	Forms of learning: supervised, unsupervised, reinforcement, etc.
Classification and clustering methods	Introduction
	Supervised classification algorithms
	Unsupervised classification algorithms (clustering)
Data processing methods	Data Preparation
	Dimensionality reduction
Experimental methodology and result analysis	Methods for estimating error
	Results analysis
	Model comparison
Regression methods for modeling and prediction	Introduction
	Main techniques
	Artificial Neural Networks

Planning

Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Supervised projects	B2 B3 B4 B13 C1 C3	0	37	37
Oral presentation	B1 B5 B15 B14 B6 C7	3	9	12
	C9 C11			
ICT practicals	A8 B13 B14 B16 B6	10.5	21	31.5
	C11			
Document analysis	B3 B5 B14 B6 C11	2	8	10
Guest lecture / keynote speech	B1 B6 C6 C8	16	2	18
Personalized attention		4	0	4

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Supervised projects	Programming exercises in which some of the techniques seen in the theory classes will be implemented on real engineering
	problems, using the programming language selected by the teachers. These exercises will be carried out by the students
	autonomously and their progress will be tutored by the teachers.
Oral presentation	Theoretical work or works about a specific topic from the contents that will be orally presented and discussed with other
	students
ICT practicals	In person computer sessions in which teachers explain the use and programming of automatic learning techniques as seen in
	theory, so that students acquire sufficient skills to use them autonomously.
Document analysis	Methodological technique that involves the use of audiovisual and/or bibliographic documents relevant to the subject matter
	with activities specifically designed for their analysis. In this case, it will be used in a context of "flipped classroom"
	in which the theoretical concepts will be reviewed by the students independently prior to the lecture session, in which an
	activity will be carried out to assess their understanding.
Guest lecture /	Oral exposition by the teachers of the theory of the subject.
keynote speech	

Personalized attention
Description
During the ICT practical classes, the student will be allowed to ask the teacher any questions that arise about the
programming of the learning methods.
Supervised projects: It is recommendable the use of a personal assistance in these activities to resolve conceptual doubts or
procedures than can appear during the resolution of the practical problems. Also, the personal assistance will be focused on in
the explanation, by the student, of the proposed solution.
Oral presentation: the students' progress in their theoretical work must be supervised by the teachers, both in terms of contents and format.
Document analysis: students will be able to consult lecturers on reference materials prior to the lectures.
Students enrolled part-time will have an online personalised communication channel in all the methodologies.

Assessment			
Methodologies	Competencies	Description	Qualification
Oral presentation	B1 B5 B15 B14 B6 C7	The oral presentation, the participation in the discussion and the written inform will be	25
	C9 C11	considered in the final qualification. It is mandatory to pass this methodology	
		independently in order to pass the whole subject.	

Supervised projects	B2 B3 B4 B13 C1 C3	Different programming projects will be proposed along the course that must be carried out in an autonomous way by the student and that will be presented and explained to the teachers afterwards. It is mandatory to pass this methodology independently in order to pass the whole subject.	60
Document analysis	B3 B5 B14 B6 C11	Part of the lectures will be used to evaluate the understanding of the documentary sources, which will be provided by the teachers prior to the class for consultation and understanding. These evaluations will be carried out by means of group work, small reports, questionnaires, or other methodologies that allow an objective assessment of the degree of analysis carried out.	15

Assessment comments

In order to obtain a pass in this subject, a minimum mark of 50 must be obtained in all the above methodologies, with a minimum of 30 in the Tutored Work and 25 in the sum of the Oral Presentation and the Document Analysis.

If the student does not pass the subject at the first sitting, he/she will have to repeat the necessary activities of the methodology(ies) that were not passed at the second sitting. As an example, if a student passed the Oral Presentation + Document Analysis part, but failed the tutored assignments, he/she will have to repeat the practical assignments necessary to achieve a pass, normally those that were not passed individually.

Assessment of the extraordinary call: students who opt for this call will have to do the tutored work and oral presentation methodologies, but not the Document Analysis. The value of this methodology is added to that of Oral Presentation, becoming worth 40%. It is necessary to contact the professors at the beginning of the term (January) in order to have a sufficient deadline for delivery.

Part-time students will be able to accumulate 15% of the grade corresponding to the Document Analysis in the oral presentation in all the sessions. This modification must be requested to the lecturers of the subject at the beginning of the term. Likewise, in the event of not being able to give the oral presentation with the rest of the students, an alternative date must be agreed with the lecturers at all the sessions.

In the case of plagiarism in internships or teaching assignments, article 11, section 4 b) of the UDC Student Disciplinary Regulations will be taken into account:

b) Failure grade in the exam session in which the offence is committed and with respect to the subject in which it is committed: the student will be graded with a "fail" (numerical grade 0) in the corresponding exam session of the academic year, whether the offence is committed on the first or second occasion. To this end, the student's grade will be modified at the first opportunity, if necessary.

	Sources of information
Basic	- Marsland, Stephen (2014). Machine Learning: An Algorithmic Perspective. Chapman and Hall/CRC Press
	- Gonzalo Pajares Martínez, Jose Manuel de la Cruz García (2010). Aprendizaje automático : un enfoque práctico.
	Ra-Ma
	- Ethem Alpaydin (2014). Introduction to Machine Learning. MIT Press
	- Christopher M. Bishop (2010). Pattern Recognition and Machine Learning. Springer
	A Whirlwind Tour of Python by Jake VanderPlas (O?Reilly):Libro en HTMLCódigo fuente de los ejercicios
Complementary	- Andreas C. Müller, Sarah Guido (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists.
	O'Reilly Media
	- Sebastian Raschka, Vahid Mirjalili (2019). Python machine learning : aprendizaje automático y aprendizaje profundo
	con Python, scikit-learn y TensorFlow. Marcombo
	- Aurelien Geron (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and
	Techniques to Build Intelligent Systems. O'Reilly Media
	- Kevin P. Murphy (2010). Machine Learning, a probabilistic perspective. MIT Press

Recommendations	
Subjects that it is recommended to have taken before	
Subjects that are recommended to be taken simultaneously	

Machine Vision for Industrial Applications/730497239 Industrial Process Design and Optimization Project/730497236 Machine Design and Construction/730497226 Kinematics and Dynamics of Industrial Robots/730497228

Subjects that continue the syllabus

Other comments

-According to the different regulations applicable to university teaching, the gender perspective must be incorporated into this subject.-Work will be done to identify and modify sexist prejudices and attitudes and influence the environment to modify them and promote values of respect and equality.-Situations of gender discrimination should be detected and actions and measures should be proposed to correct them. In order to help achieve a sustainable environment and fulfil the objective of the Green Campus Action Plan, the delivery of the documentary work carried out in this area:- Virtual format or digital support will be requested.- They'll be done on the Virtual Campus without printing them. In case they?re done in paper:-Don't use plastics.- Use double-sided printing.- Use recycled paper.- Avoid printing drafts.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.