

|                  |                                                      | Teaching Guide                  |                           |           |
|------------------|------------------------------------------------------|---------------------------------|---------------------------|-----------|
| Identifying Data |                                                      | 2020/21                         |                           |           |
| Subject (*)      | Advanced manufacturing techniques Code               |                                 |                           | 730G04075 |
| Study programme  | Grao en enxeñaría en Tecnoloxías Industriais         |                                 |                           |           |
|                  |                                                      | Descriptors                     |                           |           |
| Cycle            | Period                                               | Year                            | Туре                      | Credits   |
| Graduate         | 2nd four-month period                                | Fourth                          | Optional                  | 6         |
| Language         | Spanish                                              |                                 |                           |           |
| Teaching method  | Face-to-face                                         |                                 |                           |           |
| Prerequisites    |                                                      |                                 |                           |           |
| Department       | Enxeñaría Naval e Industrial                         |                                 |                           |           |
| Coordinador      | Nicolas Costa, Gines                                 | E-mail                          | gines.nicolas@uc          | lc.es     |
| Lecturers        | Nicolas Costa, Gines                                 | E-mail                          | gines.nicolas@uc          | lc.es     |
| Web              |                                                      |                                 | I                         |           |
|                  | The orientation of the teaching has                  | a high practical content and of | beginning the investigati |           |
| Contingency plan | of a tutored work.  1. Modifications to the contents |                                 |                           |           |

|      | Study programme competences / results                                                                                              |
|------|------------------------------------------------------------------------------------------------------------------------------------|
| Code | Study programme competences / results                                                                                              |
| B5   | CB5 Que os estudantes desenvolvan aquelas habilidades de aprendizaxe necesarias para emprenderen estudos posteriores cun alto      |
|      | grao de autonomía                                                                                                                  |
| B7   | B5 Ser capaz de realizar unha análise crítica, avaliación e síntese de ideas novas e complexas                                     |
| B9   | B8 Adquirir unha formación metodolóxica que garanta o desenvolvemento de proxectos de investigación (de carácter cuantitativo e/ou |
|      | cualitativo) cunha finalidade estratéxica e que contribúan a situarnos na vangarda do coñecemento                                  |

| Learning outcomes                                                                                           |       |          |            |  |
|-------------------------------------------------------------------------------------------------------------|-------|----------|------------|--|
| Learning outcomes                                                                                           | Study | y progra | mme        |  |
| comp                                                                                                        |       | npetenc  | petences / |  |
| re                                                                                                          |       | results  |            |  |
| Knowledge of the fundamentals and technological aspects of new fabrication processes Knowledge of the laser |       | B5       |            |  |
| Analysis, critical evaluation and synthesis of the mentioned technologies                                   |       | B7       |            |  |
|                                                                                                             |       | B9       |            |  |



| Contents                                               |                                                                                       |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Торіс                                                  | Sub-topic                                                                             |  |
| Manufacturing processes with high energy density beams | Laser technology (fundamentals, systems, applications, security)                      |  |
|                                                        | Materials processing with other techniques                                            |  |
| Additive manufacturing processes                       | Laser cladding                                                                        |  |
|                                                        | 3D printing                                                                           |  |
| Micromanufacturing                                     | Laser ablation                                                                        |  |
|                                                        | X-ray lithography                                                                     |  |
|                                                        | Focused ion beam                                                                      |  |
| Monitoring techniques and process control              | Review of the different techniques of interferometry, holography, speckle and         |  |
|                                                        | scattering                                                                            |  |
|                                                        | Applications to the measurements of displacements, form defects, superficial          |  |
|                                                        | characterization and velocimetry                                                      |  |
|                                                        | Analytical and characterization techniques based on laser spectroscopy: laser induced |  |
|                                                        | fluorescence, laser induced plasma spectroscopy                                       |  |

|                                                 | Plannir                   | Ig                      |                          |             |
|-------------------------------------------------|---------------------------|-------------------------|--------------------------|-------------|
| Methodologies / tests                           | Competencies /            | Teaching hours          | Student?s personal       | Total hours |
|                                                 | Results                   | (in-person & virtual)   | work hours               |             |
| Guest lecture / keynote speech                  | B5 B7 B9                  | 21                      | 42                       | 63          |
| Laboratory practice                             | B5 B7                     | 14                      | 28                       | 42          |
| Supervised projects                             | B5 B7 B9                  | 7                       | 35                       | 42          |
| Personalized attention                          |                           | 3                       | 0                        | 3           |
| (*)The information in the planning table is for | nuidance only and does no | t take into account the | heterogeneity of the stu | idents      |

(\*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

| Methodologies                                                                                    |                           |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------|--|--|
| Methodologies                                                                                    | Methodologies Description |  |  |
| Guest lecture / Theoretical lessons                                                              |                           |  |  |
| keynote speech                                                                                   |                           |  |  |
| Laboratory practice Session of laboratory practices of each of the thematic blocks               |                           |  |  |
| Supervised projects Realization of a bibliographic, theoretical, numerical and/or practical work |                           |  |  |

| Personalized attention |                                                                                                     |  |
|------------------------|-----------------------------------------------------------------------------------------------------|--|
| Methodologies          | Description                                                                                         |  |
| Supervised projects    | Doubts resolution of the theory and practical works. A supervisor will be assigned to each student. |  |
| Guest lecture /        |                                                                                                     |  |
| keynote speech         |                                                                                                     |  |
| Laboratory practice    |                                                                                                     |  |

| Methodologico Com     |              |                                                                                     |               |
|-----------------------|--------------|-------------------------------------------------------------------------------------|---------------|
| Methodologies Com     | npetencies / | Description                                                                         | Qualification |
|                       | Results      |                                                                                     |               |
| Supervised projects B | 35 B7 B9     | A memory of work will be presented and defended in front of professors and students | 100           |
|                       |              | of the course.                                                                      |               |

Assessment comments



It is required to attend 75% of the lectures and all the laboratory practices. Students with

recognition of part-time dedication DO NOT have an academic exemption of attendance exemption for Laboratory Practices, although they will be given facilities regarding the dates of completion prior communication. The criteria and evaluation activities for this student will be the same as for the rest of the students.

The evaluation criteria in the 2nd opportunity are the same as those in the 1st opportunity.

|               | Sources of information                                                                                            |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| Basic         | - Leonard R. Migliore (1996). Laser materials processing. Marcel Dekker                                           |  |  |
|               | - William M. Steen, Jyotirmoy Mazumder (2010). Laser material processing. Springer                                |  |  |
|               | - Demtröder, Wolfgang (1996). Laser spectroscopy basic concepts and instrumentation. Berlin: Springer             |  |  |
|               | - Toru Yoshizawa (ed) (2009). Handbook of optical metrology : principles and applications. CRC Press (Boca Raton) |  |  |
|               | - James Brown (1998). Advanced machining technology Handbook. New York: McGraw-Hill                               |  |  |
|               | - J. Paulo Davim (ed) (2008). Machining-Fundamentals and recent advances. London: Springer-Verlag                 |  |  |
|               | - J. Paulo Davim, Mark J. Jackson (ed) (2009). Nano and micromachining. John Wiley & amp; Sons                    |  |  |
|               | - Pere Molera (1989). Electromecanizado. Electroerosión y mecanizado electroquímico. Barcelona: Marcombo          |  |  |
| Complementary | - John Dowden (ed.) (2009). The theory of laser materials processing. Springer                                    |  |  |
|               | - Maximilian Lackner (ed) (2008). Lasers in chemistry. Wiley-VCH                                                  |  |  |
|               | - P. Schaaf (ed) (2010). Laser processing of materials. Springer                                                  |  |  |
|               | - Telle, Helmet H. (2007). Laser chemistry: spectroscopy, dynamics and applications . West Sussex, John Wiley     |  |  |
|               | & Sons                                                                                                            |  |  |
|               | - Peter Hering, Jan Peter Lay, Sandra Stry (2004). Laser in environmental and life sciences: modern analytical    |  |  |
|               | methods. Springer                                                                                                 |  |  |
|               | - J.P. Singh y S.N. Thakur (2006). Laser-induced Breakdown Spectroscopy. Amsterdam: Elsevier Science BV           |  |  |
|               | - D.A. Cremers y L.J. Radziemski (2006). Handbook of Laser-induced Breakdown Spectroscopy. Chichester: Wiley      |  |  |

| Recommendations                                                                    |
|------------------------------------------------------------------------------------|
| Subjects that it is recommended to have taken before                               |
|                                                                                    |
| Subjects that are recommended to be taken simultaneously                           |
|                                                                                    |
| Subjects that continue the syllabus                                                |
|                                                                                    |
| Other comments                                                                     |
| To help                                                                            |
| achieve a sustained immediate environment and meet the goal of action number 5:    |
| "Healthy and environmental and social teaching and research" of the                |
| "Green Campus Ferrol Action Plan", the following recommendations are               |
| made: - Make a sustainable use of resources and the prevention of negative         |
| impacts on the natural environment The delivery of the documentary works that      |
| are made in this matter: it will be done through Moodle, in digital format without |
| the need to print them. If it is necessary to make them on paper Plastics          |
| will not be used Double-sided prints will be made Recycled paper will be           |
| used. - The printing of drafts will be avoided.                                    |



(\*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.