

		Teaching (Guide		
	Identifyir	ng Data			2020/21
Subject (*)	Polymers in Sustainable Energy	Development		Code	770523015
Study programme	Mestrado Universitario en Eficiencia e Aproveitamento Enerxético				
		Descript	ors		
Cycle	Period	Year		Туре	Credits
Official Master's Degre	e 2nd four-month period	First		Optional	3
Language	SpanishGalicianEnglish				
Teaching method	Face-to-face				
Prerequisites					
Department	Física e Ciencias da TerraQuímio	ca			
Coordinador	Abad López, María José		E-mail	maria.jose.abao	l@udc.es
Lecturers	Abad López, María José		E-mail	maria.jose.abad	l@udc.es
	Ares Pernas, Ana Isabel ana.ares@udc.es				es
	González Rodríguez, María Victoria victoria.gonzalez.rodriguez@udc.es				
Web					
General description	Provide basic knowledge and dis	cuss the role that	conductive polym	ners as active materia	als in devices capable of
	producing, storing or saving clear	roducing, storing or saving clean energy can play.			

Contingency plan	1. Modifications to the Contents
	No changes are foreseen in the subject contents.
	2. Methodologies
	*Maintained teaching methodologies
	Supervised project: Each student will do a supervised work about one of the proposed topics. At the end of the project, they have to submit a written report and give an oral presentation to the classmates and teachers.
	have to submit a written report and give an oral presentation to the classifiates and teachers.
	*Teaching methodologies that are modified
	Guest lecture/ keynote speech: Oral presentation by videoconference using TEAMS. In addition, the Moodle forum will be
	used to promote student participation.
	Supervised project: The oral presentation will be realized by videoconference using TEAMS.
	Laboratory practices: The laboratory practices will move to online format. Teachers will provide students videos,
	instructions and other necessary materials. Virtual tutoring will be available (by Teams), Moodle forums or other
	non-presential formats to attend to students' questions.
	3. Mechanisms for personalized attention to students
	Tools: Email (via UDC mail or moodle). Videoconference or chat by TEAMS
	Timing: The doubts and questions can be made by e-mail (asynchronous communication) or by videoconference
	(synchronous communication) according to the student's preference or the topic to be discussed.
	The schedule for the personalized attention will be flexible, agreeing with the student the date and moment that better adapts to his/her needs. The questions sent by email or Moodle will be replied in a maximum period of 24 hours. This is
	valid from Monday to Friday, on teaching days.
	4. Modifications in the evaluation
	There are no changes in the assessment provided by the GADU
	*Evaluation observations:
	REQUIREMENTS TO PASS THE SUBJECT IN THE FIRST OPPORTUNITY:
	1.To attend and participate regularly in class activities.
	2. To submit and present the supervised work on the date indicated.
	3. To do and submit all the laboratory practices on the date indicated.
	3. To obtain a minimum total score of 5 out of 10.
	REQUIREMENTS TO PASS THE SUBJECT IN THE SECOND OPPORTUNITY:
	1.To pass the exam (minimum 50% of the maximum score)
	2.To do and submit on time the additional work/practices

3. To obtain a minimum total score of 5 out of 10.

5. Modifications of the bibliography or webgraphy

There are no changes. Students will have presentations and additional materials in Moodle. In addition, students will have access to the online bibliographic resources of the UDC library where they can find books and specialized scientific literature to perform their work.

	Study programme competences / results
Code	Study programme competences / results
A12	Capacidad para la toma de decisiones en un entorno tecnológico donde los materiales se utilicen en aplicaciones de eficiencia
B1	Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco
	conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
B3	Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a
	menudo en un contexto de investigación.
B9	Extraer, interpretar y procesar información, procedente de diferentes fuentes, para su empleo en el estudio y análisis.
B14	Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora de la eficiencia
B16	Valorar la aplicación de tecnologías emergentes en el ámbito de la energía y el medio ambiente.
C1	Adquirir la terminología y nomenclatura científico-técnica para exponer argumentos y fundamentar conclusiones.
C4	Desarrollar el pensamiento crítico

Learning outcomes					
Learning outcomes			Study programme		
	con	npetenc	es/		
		results			
Capacity for decision -making in a technological environment where materials are used in applications efficiency	AJ12				
That the students can apply their knowledge and their ability to solve problems in new or unfamiliar environments within		BC1			
broader (or multidisciplinary) contexts related to their field of study .					
Knowledge and understanding that provide a basis or opportunity for originality in developing and / or applying ideas , often in		BC3			
a research context.					
Extract , interpret and process information from different sources , for use in the study and analysis .		BC9			
Apply knowledge of science and advanced technologies to professional practice or research efficiency		BC14			
Assess the application of emerging technologies in the field of energy and the environment .		BC16			
Acquire scientific and technical terminology and nomenclature to present arguments and justify conclusions.			CC1		
Develop critical thinking			CC4		

Contents				
Торіс	Sub-topic			
1. Introduction to conductive polymers	1.1 . Polymers and environment			
	1.2 . Intrinsically conducting polymers			
	1.3 . Conducting composites			
2. Polymers in harvesting energy	2.1 . Harvesting energy concept			
	2.2 . Polymers in thermoelectricity			
	2.3 . Polymers in piezoelectricity			
3. Conducting polymers in light emitting diodes and solar cells	3.1. Basis			
	3.2. Devices			
	3.3. Applications			
4. Conducting polymers in electrochromic devices	4.1. Basis			
	4.2. Devices			
	4.3. Applications			
5. Conducting polymers in batteries	5.1. Basis			
	5.2. Devices			
	5.3. Applications			

Planning					
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours	
	Results	(in-person & virtual)	work hours		

Guest lecture / keynote speech	B3 B14 C1 C4	9	0	9
Supervised projects	A12 B3 B1 B9 B16 C1	1	51	52
	C4			
Laboratory practice	B3 B1 B9 C1 C4	12	1	13
Personalized attention		1	0	1

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies					
Methodologies	Description				
Guest lecture /	Oral presentation supported by audiovisual media with the inclusion of some questions for students, to provide knowledge and				
keynote speech	to facilitate learning.				
Supervised projects	Methodology is designed to promote autonomous learning of students in different environments (academic or more				
	professional environment) under the guidance of a teacher. It refers mainly to learning "how to do things." In this				
	option, students must assume the responsibility for their own learning.				
Laboratory practice	This methodology allows that students learn effectively doing practical activities, such as demonstrations, exercises, lab work				
	and researches				

Personalized attention					
Methodologies	Description				
Laboratory practice	Each student must perform autonomously a work. The teacher will guide them by individual tutoring.				
Supervised projects	The students will do three sessions of lab work where they will work concepts related to the energy efficiency in conducting				
	polymers.				

Assessment				
Methodologies	Competencies /	Description	Qualification	
	Results			
Laboratory practice	B3 B1 B9 C1 C4	The student will perform three laboratory practices related to energy efficiency of	30	
		conductive polymers .The skills acquired in the laboratory and the report submitted will		
		be evaluated .		
Supervised projects	A12 B3 B1 B9 B16 C1	Students will do individual work on a topic related to conductive polymers to be	70	
	C4	delivered and presented to other students . Both will be evaluated.		

Assessment comments

Students who accumulate more than 20% of unjustified absences, who have not carried out all the laboratory practices (without justified cause) or who have not submitted the supervised work are excluded from the continuous evaluation process. They will be qualified as NOT ATTEND at the first opportunity.

REQUIREMENTS TO PASS THE SUBJECT AT THE FIRST OPPORTUNITY :

1.Attend and participate regularly in class activities.

2.Submit and present the supervised work on the date indicated.3. To do and submit all the laboratory practices on the indicated dates.3. Obtain a minimun total score of 5 out of 10.

Students with recognition of partial time dedication and academic exemption from attendance, must communicate it to the teachers at the beginning of the term and justify them adequately. In this case, teachers will be given appropriate instructions to ensure that the students follow the subject without problems, by replacing the classroom teching methodologies with other individual works with the same score.

Translated with www.DeepL.com/Translator (free version)

At the second opportunity, the student will have to pass an objective test or exam (in classroom or online) that may have different types of questions (multiple choice, sorting, short answer, discrimination, completion and/or association). In addition, students will be asked to perform an additional work/laboratory practices. The rating will be 50% the objective test (exam), 30% the laboratory practices and 20% additional work/practices. REQUIREMENTS TO PASS THE SUBJECT AT THE SECOND OPPORTUNITY :

1.To pass the exam (minimum 50% of the maximum score)

2.To do and submit on time the additional work/practices

3. Obtain a minimun total score of 5 out of 10.

	Sources of information				
Basic	- Hideki Shirakawa (). The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers. Angew				
	Chem. Int. Ed. 2001, 40, 2574 - 2580				
	- Alan G. MacDiarmid (). ^a Synthetic Metals ^o : A Novel Role for Organic Polymers. Angew. Chem. Int. Ed. 2001, 40,				
	2581 - 2590				
	- Alan J. Heeger (). Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. Angew.				
	Chem. Int. Ed. 2001, 40, 2591 - 2611				
	- Olga Bubnova and Xavier Crispin (). Towards polymer-based organic thermoelectric generators. Energy & amp;				
	Environmental Science 2012, 5, 9345-9362				
	- Javier Padilla Martínez; Rafael Garcia Valverde; Antonio Jesús Fernández Romero y Antonio Urbina Yer ().				
	Polímeros conductores. Su papel en un desarrollo energético sostenible. Editorial Reverté				
	- Sambhu Bhadraa; Dipak Khastgir; Nikhil K. Singhaa and Joong Hee Lee (). Progress in preparation, processing and				
	applications of polyaniline. Progress in Polymer Science 34 (2009) 783?810				
	- Yong Dua, Shirley Z. Shenb, Kefeng Caia, Philip S. Casey (). Research progress on polymer?inorganic				
	thermoelectric nanocomposite materials. Progress in Polymer Science 37 (2012) 820? 841				
	- Petr Novák; Klaus Müller; K. S. V. Santhanam and Otto Haas (). Electrochemically Active Polymers for Rechargeab				
	Batteries. Chem. Rev. 1997, 97, 207-281				
	- Pierre M. Beaujuge and John R. Reynolds (). Color Control in ?-Conjugated Organic Polymers for Use in				
	Electrochromic Devices. Chem. Rev. 2010, 110, 268?320				
	- Yasuhiko Shirota and Hiroshi Kageyama (). Charge Carrier Transporting Molecular Materials and Their Applications				
	in Devices. Chem. Rev. 2007, 107, 953-1010				
	- K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo (). Highly Efficient Organic Devices Based on Electrically Doped				
	Transport Layers. Chem. Rev. 2007, 107, 1233-1271				
Complementary					

Recommendations	
Subjects that it is recommended to have taken before	
Subjects that are recommended to be taken simultaneously	

Subjects that continue the syllabus

Other comments

Recommendations Sustainability Environment, Person and Gender Equality:1. The delivery of the works (supervised work / reports of practices) that are carried out in this matter will be done in the following way:

1.1. It will be delivered in virtual format and / or computer support

1.2. In the case of having to print something on paper, it will be made on recycled and double-sided paper. Drafts will not be printed, only the final version.2. It must make a sustainable use of resources and the prevention of negative impacts on the natural environment. It will be encouraged that the materials that are discarded in the matter (papers, plastics) are thrown in the respective containers enabled in the streets for such purpose.3. It will try to convey to students the importance of ethical principles related to the values ??of sustainability so that they apply not only in the classroom, but in personal and professional behaviors.4. The gender perspective must be incorporated in this subject, so the works delivered by the students and the material prepared by the teacher must use non-sexist language.5. It will facilitate the full integration of students who for physical, sensory, psychic or sociocultural reasons, experience difficulties to an adequate, equal and profitable access to university life.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.