		Guia d	ocente		
	Datos Ident	tificativos			2017/18
Asignatura (*)	Máquinas Eléctricas II			Código	770G02026
Titulación	Grao en Enxeñaría Eléctrica				
	'	Descri	ptores		
Ciclo	Periodo	Cu	rso	Tipo	Créditos
Grado	2º cuatrimestre	Terd	cero	Obligatoria	6
Idioma	CastellanoGallego		·		
Modalidad docente	Presencial				
Prerrequisitos					
Departamento	Enxeñaría Industrial				
Coordinador/a	Chouza Gestoso, Jesus Diego Correo electrónico jesus.chouza@udc.es				
Profesorado	Chouza Gestoso, Jesus Diego Correo electrónico jesus.chouza@udc.es				
Web	moodle.udc.es/login/index.php				
Descripción general	Esta asignatura forma parte del Módulo de Tecnología Específica de Electricidad, su objetivo es el estudio del fundament				etivo es el estudio del fundamento
	teórico de los convertidores electromecánicos de energía, a fin de comprender el funcionamiento de la máquina eléctrica				namiento de la máquina eléctrica,
	como un conjunto de mecanismos capaces de generar, aprovechar o transformar la energía eléctrica.			rgía eléctrica.	

	Competencias / Resultados del título
Código	Competencias / Resultados del título
A2	Capacidad para la redacción, firma, desarrollo y dirección de proyectos en el ámbito de la ingeniería industrial, y en concreto de la
	especialidad de electricidad.
A4	Capacidad de gestión de la información, manejo y aplicación de las especificaciones técnicas y la legislación necesarias en el ejercicio de
	la profesión.
A5	Capacidad para analizar y valorar el impacto social y medioambiental de las soluciones técnicas actuando con ética, responsabilidad
	profesional y compromiso social, buscando siempre la calidad y mejora continúa.
A24	Capacidad para el cálculo y diseño de máquinas eléctricas.
B1	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad y razonamiento crítico.
B2	Capacidad de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la ingeniería industrial.
В3	Capacidad de trabajar en un entorno multilingüe y multidisciplinar.
B4	Capacidad de trabajar y aprender de forma autónoma y con iniciativa.
B5	Capacidad para usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la práctica de la misma.
C1	Expresarse correctamente, tanto de forma oral como escrita, en las lenguas oficiales de la comunidad autónoma.
C3	Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su
	profesión y para el aprendizaje a lo largo de su vida.
C6	Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse.

Resultados de aprendizaje			
Resultados de aprendizaje	Con	npetenc	ias /
	Result	ados de	el título
Principios de funcionamiento y aplicaciones de las máquinas de inducción.	A2	B1	C1
Comprender los principios de funcionamiento y saber aplicarlos para este tipo de máquinas.	A4	B2	C3
Saber identificar, clasificar y describir el comportamiento de sistemas con máquinas	A5	В3	C6
eléctricas de inducción a través del uso de métodos analíticos y técnicas de modelado.	A24	B4	
Tener habilidad para aplicar métodos cuantitativos al análisis de las máquinas eléctricas y para resolver problemas de		B5	
ingeniería.			
Deberá desarrollar habilidades de trabajo en laboratorio y en talleres.			
Saber emplear literatura técnica y otras fuentes de información, como estándares de la industria referentes a este tipo			
máquinas eléctricas.			

Principios de funcionamiento y aplicaciones de las máquinas sínconas.	A2	B1	C1
Comprender los principios de funcionamiento y saber aplicarlos para este tipo de máquinas.	A4	B2	СЗ
Saber identificar, clasificar y describir el comportamiento de sistemas con alternadores y motores síncronos a través del uso	A5	В3	C6
de métodos analíticos y técnicas de modelado.	A24	В4	
Tener habilidad para aplicar métodos cuantitativos al análisis de las máquinas eléctricas y para resolver problemas de		B5	
ingeniería.			
Deberá desarrollar habilidades de trabajo en laboratorio y en talleres.			
Saber emplear literatura técnica y otras fuentes de información, como estándares de la industria referentes a este tipo			
máquinas eléctricas			

Contenidos		
Tema	Subtema	

BLOQUE TEMATICO I. Máquinas eléctricas de inducción.

- Tema 1. Constitución y funcionamiento de la máquina de inducción.
- 1.1.- Introducción.
- 1.2.- Onda de campo de un devanado de ca monofásico concentrado de paso diametral.
- 1.3.- Onda de campo de un devanado distribuido de paso acortado.
- 1.4.- Onda de campo de un devanado trifásico. Campo magnético giratorio.
- 1.4.1.- Teorema de Ferraris.
- 1.5. Constitución y principios de funcionamiento.
- 1.6. Devanados de corriente alterna.
- 1.7. Magnitudes fundamentales.
- 1.8. Diagrama en el espacio del motor de inducción.
- 1.9. Fuerzas tangenciales y par motor
- 1.10. El motor de inducción como transformador.
- 1.11. Diagrama vectorial en vacío.
- 1.12. Circuito equivalente y diagrama vectorial en carga.
- 1.13. Circuitos equivalentes aproximados.
- 1.14. Balance de potencia.
- 1.15. Rendimiento eléctrico.

PUNTOS CLAVE

Teorema de Ferraris.

Diagrama vectorial del motor de inducción.

Circuito equivalente.

Balance de potencias.

Tema 2. El motor de inducción en servicio.

- 2.1. Características funcionales.
- 2.2. Curva de velocidad.
- 2.3. Curva de intensidad absorbida.
- 2.4. Curva de rendimiento.
- 2.5. Curva de factor de potencia.
- 2.6. Característica par-deslizamiento y límite de estabilidad.
- 2.7. Diagrama circular. Deducción y trazado.
- 2.7.1 Representación de las magnitudes más importantes.
- 2.7.2. Representación de las potencias, de los pares y deslizamientos.
- 2.7.3. Determinación del diagrama circular a partir de los ensayos.
- 2.8. La máquina de inducción funcionando como generador y freno electromagnético.

PUNTOS CLAVE

Características.

Diagrama circular.

Tema 3. Arranque del motor de inducción.

- 3.1. Arranque directo.
- 3.2. Por regulación del circuito del estator.
- 3.2.1. Introducción de una impedancia en el estator.
- 3.2.2. Arranque por autotransformador.

- 3.2.3. Conmutación estrella-triangulo.
- 3.3. Por regulación del rotor.

PUNTOS CLAVE

Variación de la tensión de alimentación.

Inserción de resistencias en el circuito del rotor.

Tema 4. Regulación de la velocidad.

- 4.1. Métodos de regulación de la velocidad.
- 4.2. Variación del número de polos.
- 4.3. Regulación por variación en la frecuencia de alimentación.
- 4.4. Regulación de la velocidad actuando sobre el deslizamiento
- 4.4.1. Regulación por variación de la tensión de la línea.
- 4.4.2. Regulación por variación de la resistencia del rotor.
- 4.4.3. Regulación por recuperación de energía rotórica.
- 4.5. Regulación electrónica de los motores de inducción.
- 4.6. Frenado de los motores de inducción
- 4.6.1. Frenado por recuperación (regenerativo).
- 4.6.2. Frenado por contracorriente o en contramarcha.
- 4.6.3. Frenado dinámico.

PUNTOS CLAVE

Regulación por variación de la frecuencia.

Reguladores electrónicos.

Tema 5. Motores de inducción de ejecución especial.

- 5.1. Motor de inducción de doble jaula.
- 5.2. Motor de inducción de ranura profunda.
- 5.3. Motor de inducción de rotor macizo.
- 5.4. Motor de inducción lineal.

Tema 6. Generadores asíncronos.

- 6.1. La máquina de inducción como generador.
- 6.2. Excitación del generador de inducción por condensadores.
- 6.3. Regulador de inducción trifásico.
- 6.4. Decalador de fase.
- 6.5. Convertidor dinámico rotativo de frecuencia.

PUNTOS CLAVE

Excitación del generador de inducción.

Tema 7. Motor de inducción monofásico.

- 7.1. Introducción.
- 7.2. Teoría del doble campo giratorio.
- 7.3. Circuito equivalente y características.
- 7.4. Teoría del campo transversal.
- 7.5. Arranque de los motores monofásicos.
- 7.5.1. Motor de fase partida.
- 7.5.2. Motor con arranque por condensador.
- 7.6. Otros motores monofásicos de inducción.
- 7.6.1. Motor con espira de sombra.
- 7.6.2. Motor monofásico de inducción con arranque por reluctancia.
- 7.7. Aplicaciones de los motores monofásicos de inducción.

PUNTOS CLAVE

Arranque de los motores monofásicos.

PRÁCTICAS DE LABORATORIO

Práctica 1. Arranque automático directo de un motor asíncrono trifásico.

Práctica 2. Ensayo de vacío y de corto de un motor asíncrono trifásico.

Práctica 3.Diagrama del círculo. Rendimiento.

Práctica 4. Característica par-velocidad.

Práctica 5. Montaje de una instalación de arranque, protección e inversión de marcha de un motor trifásico de rotor en jaula de ardilla (Inversor estrella-triángulo).

Práctica 6. Motor trifásico de varias velocidades. Conexiones Dahlander.

Práctica 7. Arranque automático de un motor asíncrono de rotor bobinado mediante la adición de resistencia al rotor (2 escalones).

BLOQUE TEMATICO II. La máquina síncrona.

- Tema 1. Teoría y fundamentos generales.
- 1.1. Constitución y clasificación de las máquinas síncronas.
- 1.2. Principio de funcionamiento como generador y como motor.
- 1.3. El sistema inductor y su excitación.
- 1.4. Refrigeración de las grandes unidades.

Tema 2. Funcionamiento en vacío y en carga.

- 2.1. Característica de vacío.
- 2.2. Funcionamiento en carga. Flujo de dispersión.
- 2.3. Reactancia y f.e.m. de dispersión.
- 2.4. Reacción de inducido.
- 2.5. Influencia del Cos & amp; amp; #61546;.
- 2.6. Influencia de la saturación.

PUNTOS CLAVE

Reacción del inducido.

Tema 3. Diagramas vectoriales, curvas características y parámetros singulares.

- 3.1. Diagrama en el espacio de la máquina de rotor cilíndrico con carga equilibrada.
- 3.2. Diagrama vectorial y circuito equivalente de la máquina síncrona de rotor cilíndrico, no saturada.
- 3.3. Diagrama vectorial de la máquina saturada.
- 3.4. Diagrama vectorial de la máquina síncrona de polos salientes.
- 3.5. Características en cortocircuito.
- 3.6. Triángulo de Potier.
- 3.7. Característica reactiva.
- 3.8. Reactancia síncrona no saturada y saturada.
- 3.9. Relación de cortocircuito.

PUNTOS CLAVE

Diagramas espaciales.

Diagramas temporales.

Tema 4. Regulación de tensión de un alternador.

- 4.1. Regulación de un alternador.
- 4.2. Métodos de Behn-Eschenburg y A.I.E.E.
- 4.3. Método de Potier y A.S.A.
- 4.4. Método de Blondel para máquinas de polos salientes.
- 4.4.1. Reactancias síncronas longitudinal y transversal.
- 4.5. Potencias activa y reactiva del generador síncrono.

- 4.6. Características Potencia- ángulo del par.
- 4.7. Característica exterior.
- 4.8. Característica de regulación.
- 4.9. Autoexcitación de un alternador.

PUNTOS CLAVE

Regulación de tensión.

Tema 5. Las máquinas síncronas funcionando en paralelo

- 5.1. Maniobra de acoplamiento, sincronización.
- 5.2. Estabilidad estática del funcionamiento en paralelo.
- 5.3. La máquina síncrona acoplada a una red de potencia infinita.
- 5.4. Análisis del funcionamiento como generador y como motor.
- 5.5. Diagrama circular de corrientes a excitación constante y potencia variable.
- 5.6. Reparto de las potencias activa y reactiva entre alternadores acoplados en paralelo sobre una red de potencia infinita.

PUNTOS CLAVE

Estatismo. Reparto de las potencias entre alternadores acoplados.

Tema 6. El motor síncrono en servicio.

- 6.1. Método de arranque del motor síncrono.
- 6.2. Motor asíncrono-sincronizado.
- 6.3. Motor síncrono como compensador de fase.
- 6.4. Par y potencia del motor síncrono.
- 6.5. Característica de la máquina síncrona como motor.

Curvas en V de Mordey.

- 6.6. Motores de reluctancia, histéresis e imanes permanentes.
- 6.7. Aplicaciones del motor síncrono.

PUNTOS CLAVE

Características y aplicaciones del motor síncrono.

Tema 7. Cortocircuito de la máquina síncrona.

- 7.1. Cortocircuito permanente simétrico y asimétrico.
- 7.2. Cortocircuito fase-neutro, fase-fase y dos fases-neutro.
- 7.3. Reactancia directa, inversa y homopolar.
- 7.4. Cortocircuito brusco de un alternador funcionando en vacío.
- 7.5. Reactancia subtransitoria y transitoria.
- 7.6. Cortocircuito brusco de la máquina síncrona en carga.
- 7.7. Cortocircuito brusco trifásico en máquinas de polos salientes.
- 7.8. Cortocircuito brusco asimétrico.

7.9. Constante de tiempo que intervienen en el cortocircuito brusco.

PUNTOS CLAVE

Reactancia directa, inversa y homopolar.

PRÁCTICAS DE LABORATORIO

Práctica 1. Ensayo de un alternador trifásico. Características en vacío y cortocircuito. Impedancia síncrona.

Práctica 2. Análisis no lineal. Método de Potier o del factor de potencia nulo.

Práctica 3. Determinación directa de las características en carga de un alternador.

Práctica 4. Determinación de la intensidad de excitación en carga y de la relación de tensión de los alternadores.

Práctica 5. Acoplamiento a la red de un generador síncrono. Límites de funcionamiento.

Práctica 6. Reparto de cargas de alternadores en paralelo.

Práctica 7. Curvas en V o de Mordey de un motor síncrono.

	Planificacio	ón		
Metodologías / pruebas	Competencias /	Horas lectivas	Horas trabajo	Horas totales
	Resultados	(presenciales y	autónomo	
		virtuales)		
Sesión magistral	A2 A4 A5 A24 B1 B2	21	32	53
	B3 B4 B5 C1 C3 C6			
Prácticas de laboratorio	A2 A4 A5 A24 B1 B2	9	10	19
	B3 B4 B5 C1 C3 C6			
Solución de problemas	A2 A4 A5 A24 B1 B2	21	38	59
	B3 B4 B5 C1 C3 C6			
Prueba objetiva	A2 A4 A5 A24 B1 B2	5	12	17
	B3 B4 B5 C1 C3 C6			
Atención personalizada		2	0	2

	Metodologías
Metodologías	Descripción
Sesión magistral	Actividad presencial en el aula, donde se establecerán los conceptos fundamentales de la materia. Se realizará mediante una
	exposición oral, complementada con medios audiovisuales y multimedia, cuyo fin es transmitir los conocimientos y facilitar el aprendizaje.
Prácticas de	Se realizarán en el laboratorio de electricidad, en 6 sesiones de 1,5 horas/sesión. Consistiran en casos prácticos donde el
laboratorio	alumno deberá demostrar los conocimientos teóricos adquiridos.
Solución de	El profesor realizará diversos problemas tipo, explicando de una manera sistemática los diferentes métodos de resolución. En
problemas	cada sesión se resolverán las dudas ó dificultades que puedan surgir, a fin de proporcionar al alumno los recursos necesarios para su posterior solución.
Prueba objetiva	Prueba de evaluación que se realizará al final del curso, en las correspondientes convocatorias oficiales, donde el alumno
	deberá demostrar su grado de aprendizaje de una manera objetiva. Constarán de un número comprendido entre 15 y 20
	preguntas tipo test, acompañadas de 6 posibles respuestas, donde sólo una es la correcta, el alumno deberá justificar
	siempre la respuesta, siendo esta condición indispensable para que la respuesta sea aceptada como correcta.

Atención personalizada				
Metodologías	Descripción			
Solución de	Se realiza en las correspondientes tutorias, donde a iniciativa del alumno se resuelven, o aclaran las posibles dudas. También			
problemas	se pueden realizar a propuesta del profesor, requiriendole que explique o resuelva los posibles problemas que se puedan			
Prácticas de	plantear, en las sesiones de Solución de Problemas, o en las correspondientes Prácticas de Laboratorio.			
laboratorio				

		Evaluación	
Metodologías	Competencias /	Descripción	Calificación
	Resultados		

Prueba objetiva	A2 A4 A5 A24 B1 B2	La prueba objetiva que se realizará al final del curso, en las correspondientes	70
	B3 B4 B5 C1 C3 C6	convocatorias oficiales, donde el alumno deberá demostrar su grado de aprendizaje	
		de una manera objetiva. Constarán de un número comprendido entre 15 y 20	
		preguntas tipo test, acompañadas de 6 posibles respuestas, donde sólo una es la	
		correcta, el alumno deberá justificar siempre la respuesta, siendo esta condición	
		indispensable para que la respuesta sea aceptada como correcta.	
		Para superar la asignatura el alumno deberá obtener 4,5 ptos. sobre 10 en esta	
		prueba.	
		Esta prueba representará el 70% de la nota final.	
Solución de	A2 A4 A5 A24 B1 B2	Se propondrá una prueba cuando el desarrollo del temario llegue a la mitad, que	15
problemas	B3 B4 B5 C1 C3 C6	supondrá el 15% de la nota final, siempre que el alumno obtenga 5 ptos. sobre 10 en	
		la prueba objetiva. Esta prueba es voluntaria.	
Prácticas de	A2 A4 A5 A24 B1 B2	La realización con aprovechamiento de las prácticas de laboratorio son	15
laboratorio	B3 B4 B5 C1 C3 C6	indispensables para superar la asignatura.	
		El examen de prácticas de laboratorio representarán el 15% de la nota final de la	
		asignatura, siempre que el alumno obtenga 4,5 ptos. sobre 10 en la prueba objetiva,	
		en ningún caso puede servir para compensar notas inferiores a 4,5 ptos, en la Prueba	
		Objetiva.	
Otros			

Observaciones evaluación

Si en la prueba objetiva la nota es mayor o igual a 4,5 ptos. sobre 10 . La nota será 0,70x(nota prueba objetiva)+0,15x(nota prácticas laboratorio, deberá asistir a todas las sesiones)+0,15x(nota de la prueba intermedia a realizar, en las horas de solución de problemas, es una prueba voluntaria). En caso de que no se alcancen los 4,5 ptos en la prueba objetiva, la nota resultante será la obtenida exclusivamente en la prueba objetiva. Todas las pruebas se evaluarán sobre 10.

La prueba objetiva se evalúa: Nota= [Aciertos-(Errores/Distractores)](10/Nº de preguntas)

	Fuentes de información			
Básica	- ()			
Complementária				

Recomendaciones

Asignaturas que se recomienda haber cursado previamente

Máquinas Eléctricas I/770G02021

Instalaciones Eléctricas en Baja Tensión/770G02022

Circuitos Eléctricos de Potencia/770G02023

Física I/770G02003

Fisíca II/770G02007

Fundamentos de Electricidad/770G02013

Asignaturas que se recomienda cursar simultáneamente

Instalaciones Eléctricas en Media y Alta Tensión/770G02027

Asignaturas que continúan el temario

Instalaciones de Energías Renovables/770G02033

Accionamientos de Máquinas Eléctricas/770G02035

Transporte de Energía Eléctrica/770G02036

Otros comentarios

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías