Identifying Data 2015/16
Subject (*) Xenética molecular Code 610G02020
Study programme
Grao en Bioloxía
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Third Obligatoria 6
Language
Galician
Teaching method Face-to-face
Prerequisites
Department Bioloxía Celular e Molecular
Coordinador
Insua Pombo, Ana Maria
E-mail
ana.insua@udc.es
Lecturers
Insua Pombo, Ana Maria
Nantón Varela, Ana
Torrecilla Pérez, Zeltia
E-mail
ana.insua@udc.es
ana.nanton@udc.es
zeltia.torrecilla@udc.es
Web
General description Esta materia céntrase nas bases conceptuais e metodolóxicas necesarias para comprender a organización, expresión, variación e manipulación do material xenético. Achega unha perspectiva molecular aos coñecementos adquiridos en "Xenética" (obrigatoria de 2º curso) e coñecementos necesarios para abordar "Xenética de Poboacións e Evolución", "Citoxenética" e outras materias relacionadas de terceiro e cuarto curso.

Study programme competencies
Code Study programme competences
A5 Analizar e caracterizar mostras de orixe humana.
A11 Identificar e analizar material de orixe biolóxica e as súas anomalías.
A12 Manipular material xenético, realizar análises xenéticas e levar a cabo asesoramento xenético.
A15 Deseñar e aplicar procesos biotecnológicos.
A29 Impartir coñecementos de Bioloxía.
A30 Manexar adecuadamente instrumentación científica.
A31 Desenvolverse con seguridade nun laboratorio.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B5 Traballar en colaboración.
B7 Comunicarse de maneira efectiva nunha contorna de traballo.

Learning aims
Learning outcomes Study programme competences
General knowledge and understanding of the molecular basis of the organization, expression, variation and manipulation of genetic material A11
A12
A15
A29
B1
B2
B3
B5
B7
Knowledge of the basic methodologies used in Molecular Genetics. A5
A11
A12
A15
A29
A30
A31
B1
B2
B3
B5
Ability to use sources of information of interest in Molecular Genetics. A5
A11
A12
A15
A29
B1
B2
B3
Ability to interpret and transmit information of Molecular Genetics A29
B1
B2
B3
B5
B7

Contents
Topic Sub-topic
1.- GENOME ORGANIZATION C-value paradox. Prokaryotic and eukaryotic genomes. Single-copy and repetitive DNA sequences. Gene families. Centromeres. Telomeres. Organelle genomes.
2.- DNA REPLICATION Semiconservative DNA replication: the Meselson and Stahl experiment. Modes of replication. Enzymology of the replication. DNA replication in Escherichia coli. DNA replication in eukaryotes. Telomere synthesis. Replication of mithocondrial and cloroplast DNA.
3.- SYNTHESIS AND PROCESSING OF RNA Clases of RNA. RNA polymerases. Promoters and transcriptional appartatus. Transcription in prokaryotes and eukaryotes: initiation, elongation and termination. Interrupted genes: exons and introns. Processing of eukaryotic pre-mRNA. Synthesis and processing of pre-rRNA. Synthesis and processing of pre-tRNA. RNA edition. Revision of gene concept.
4.- TRANSLATION The one gene-one enzyme hypothesis. The genetic code: characteristics and experiments to decipher the code. Initiation of translation. Elongation of the polypeptide chain. Termination of translation. Messenger RNA surveillance.
5.- MUTATION AND DNA REPAIR Molecular basis of spontaneous mutations: replication errors, unequal crossing over, spontaneous chemical changes. Molecular basis of induced mutations: chemical and physical agents. Repair mechanisms: direct reversal of damaged DNA, excision repair, postreplication repair, error-prone repair, repair of double-strand breaks.
6.- MOLECULAR MECHANISM OF GENETIC RECOMBINATION
The role of genetic recombination. Gene conversion. Models of homologous recombination: Holliday model and double-strand break model. Enzymes required for recombination. Site-specific recombination. Inmunoglobulin genes assemble by recombination.
7.- TRANSPOSABLE GENETIC ELEMENTS Transposable elements in prokaryotes: insertion sequences, composite transposons and noncomposite transposons. Replicative and non replicative transposition. Transposable elements in eukaryotes: transposons and retrotransposon. Evolutionary significance of transposable elements.
8.- RECOMBINANT DNA TECHNOLOGY Restriction enzymes. Cloning vectors. DNA libraries: construction and screening. Southern and northern blotting. Restriction maps. Sequencing. PCR. Site-directed mutagenesis.
9.- APPLICATIONS OF RECOMBINANT DNA TECHNOLOGY
Expression of eukaryotic genes in E. coli. DNA transfer to eukaryotic cells. Transgenic animals. Transgenic plants. Gene therapy. Molecular markers. DNA fingerprinting. Genetic diagnosis. Synthetic genomes.
10.- GENOMICS
Physical and genetic mapping. Whole genome sequencing. Genome annotation. DNA microarrays. Reverse Genetics. Comparative genomics. Metagenomics.
11.- REGULATION OF GENE EXPRESSION IN BACTERIA
Jacob and Monod’s operon model for the regulation of lac genes in E. coli. Positive control of the lac operon. The arabinose operon of E. coli: positive and negative control. The triptophan operon of E. coli: negative control and attenuation. Control by RNA molecules.
12.- REGULATION OF GENE EXPRESSION IN EUKARYOTES
Changes in chromatin structure. DNA metilation. Transcriptional control.
RNA processing control. Control of mRNA stability. Control at the level of translation. RNA interference. Epigenetics.
13.- GENETIC CONTROL OF DEVELOPMENT
Basic events of development. Drosophila development stages. Maternal-effect, segmentation and homeotic genes in Drososphila. Homeobox genes in other organisms. General aspects of Caenorhabditis elegans development. Genetic control of flower development in Arabidopsis.
PRACTICE 1: DNA EXTRACTION DNA extraction from Drosophila melanogaster and human cells. Agarose gel electrophoresis of DNA. DNA quantification.
PRACTICE 2: PCR PCR amplification of the locus PV92. Analysis of an insertion polymorphism of Alu sequences
PRACTICE 3: DOT-BLOT Nucleic acids hybridization: detection of microsatellite sequences by dot-blot
PRACTICE 4: BIOINFORMATICS. Database search and comparison of nucleic acid sequences. Primer design. Identification of ORFs.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A5 A11 A12 A15 B2 B3 B7 28 42 70
Seminar A5 A11 A12 A15 A29 B1 B2 B3 B5 B7 8 20 28
Laboratory practice A5 A11 A12 A15 A30 A31 B1 B2 B3 B5 B7 15 7.5 22.5
Supervised projects A5 A11 A12 A15 A29 B1 B2 B3 B5 B7 0 21.5 21.5
Mixed objective/subjective test A5 A11 A12 A15 A29 B1 B2 B3 B7 6 0 6
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech The teacher explains the main contents of each lesson.
Seminar Resolution/discussion of questions and problems realted to the subject.
Laboratory practice The student conducts laboratory experiences following a protocol, under the supervision of the teacher.
Supervised projects Students resolve questions and problems and/or prepare written documents related to some aspects of the subject. This activity is done in groups.
Mixed objective/subjective test Objective test, short answer questions and problem resolution.

Personalized attention
Methodologies
Supervised projects
Description
Individually or in group, students can attend tutorial sessions to consult any doubts that might arise from the different activities.

Assessment
Methodologies Competencies Description Qualification
Supervised projects A5 A11 A12 A15 A29 B1 B2 B3 B5 B7 Assessment will be based on providing correct answers, clarity of explanations and documentary sources used. The score depends on work carried out at individual (10%) and group level (10%).
20
Mixed objective/subjective test A5 A11 A12 A15 A29 B1 B2 B3 B7 The degree of general knowledge and understanding of the subject will be assessed.
Consists of two parts.
One is related to theoretical content and represents 70% of the score.
The other is related to the laboraroty practices and represents 10% of the score.
80
 
Assessment comments

To pass the course, the score must be 5 or higher but with at least a 4 in each part of the test.


If the sum of the score of all activities is higher than 5, but  the score on one part of the text is lower than 4 then the final score is 4.9 (failing score).


It is considered "NP" (non attendance) when less than 30% of the assessed activities were carried out.


Preferably, first class honors will be awarded in January among students with a score of 9 or higher.


A mid-term exam will be held. A score of 5 or higher will be maintained until July.


In July there is the opportunity to retake only the test. The January's score of supervised projects is maintained.


Sources of information
Basic Klug, W.S., Cummings, M.R., Spencer, C.A (2013). Conceptos de Genética . Pearson/Prentice Hall, Madrid
Griffiths, A.J.F., Wessler, S.R., Suzuki, Lewontin, R.C. Carroll, S.B. (2008). Genética. McGraw-Hill/Interamericana de España, Madrid
Pierce, B.A. (2010). Genética: un enfoque conceptual. Médica Panamericana, Madrid

Complementary Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J. (2002). Biología celular y Molecular (4ª ed) . Médica Panamericana, Madrid
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2010). Biología Molecular de la célula. Omega, Barcelona
Lewin, B. (2008). Genes IX. McGraw-Hill. México
Benito, C., Espino, F.C. (2013). Genética: conceptos esenciales. Médica Panamericana, Madrid
Brooker, R.J. (2005). Genetics: Analysis and Principles (2nd ed). . McGraw-Hill, Boston, USA
Hartwell, L.H., Hood, L., Goldberg, M.L., Reynols, A.E., Silver, L.M., Veres, R.C. (2008). Genetics: from genes to genomes (3ª ed.) . McGraw-Hill, Boston, USA
Brown, T.A. (2008). Genomas (3ª ed.). Médica Panamericana, Buenos Aires
Russell, P.J. (2010). iGenetics: a molecular approach (3º ed.) . Benjamin Cummings, San Francisco, USA
Perera, J., Tormo, A., García, J.L. (2002). Ingeniería genética. Vol. I: Preparación, análisis, manipulación y clonaje de DNA. Síntesis, Madrid
Perera, J., Tormo, A., García, J.L. 2002b (2002). Ingeniería genética. Vol. II. Expresión de DNA en sistemas heterólogos. Síntesis, Madrid
Krebs, J.E., Goldstein, E.S., Kilpatrick, S.T. (2012). Lewin genes: fundamentos. Médica Panamericana, Madrid
Snustad, D.P., Simmons, M.J. (2006). Principles of Genetics (4ed). John Wiley and Sons, Inc. New York, USA

Consult the Moodle platform for additional sources of information


Recommendations
Subjects that it is recommended to have taken before
Citoloxía/610G02007
Bioquímica: Bioquímica I/610G02011
Bioquímica: Bioquímica II/610G02012
Microbioloxía/610G02015
Xenética/610G02019

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Xenética de poboacións e evolución/610G02021
Citoxenética/610G02022

Other comments

Recommendations:

Attend class and follow the development of the course regularly.

Check Moodle and email regularly to obtain the materials and know the schedule of activities.

Attend tutorials to resolve any questions or difficulties that may arise.

Consult the recommended bibliography.

Keep up-to-date with course work.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.