Datos Identificativos 2015/16
Asignatura (*) Matemáticas para la Arquitectura 2 Código 630G02009
Titulación
Grao en Estudos de Arquitectura
Descriptores Ciclo Periodo Curso Tipo Créditos
Grado 2º cuatrimestre
Primero Obligatoria 6
Idioma
Castellano
Modalidad docente Presencial
Prerrequisitos
Departamento Métodos Matemáticos e de Representación
Coordinador/a
Martin Gutierrez, Maria Emma
Correo electrónico
emma.martin.gutierrez@udc.es
Profesorado
Cuellar Cerrillo, Nuria
Fernandez Esteller, Rosa Maria
Martin Gutierrez, Maria Emma
Otero Piñeiro, Maria Victoria
Rodriguez Seijo, Jose Manuel
Correo electrónico
nuria.cuellar@udc.es
rosa.esteller@udc.es
emma.martin.gutierrez@udc.es
victoria.otero@udc.es
jose.rodriguez.seijo@udc.es
Web http://moodle.udc.es
Descripción general Esta asignatura se encuadra dentro de las materias básicas que se imparten en el primer curso del plan de estudios conducente al título de graduado en Estudios de Arquitectura. Supone una continuación de la asignatura Matemáticas para la Arquitectura 1, y en ella se amplía el estudio del cálculo integral y se introduce al alumno en el estudio de la geometría diferencial de curvas y superficies.

Competencias del título
Código Competencias del título
A11 Conocimiento aplicado del cálculo numérico, la geometría analítica y diferencial y los métodos algebraicos.
A63 Elaboración, presentación y defensa ante un Tribunal Universitario de un trabajo académico original realizado individualmente relacionado con cualquiera de las disciplinas cursadas.
B1 Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
B2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B6 Conocer la historia y las teorías de la arquitectura, así como las artes, tecnologías y ciencias humanas relacionadas con esta
B9 Comprender los problemas de la concepción estructural, de construcción y de ingeniería vinculados con los proyectos de edificios así como las técnicas de resolución de estos
C1 Expresarse correctamente, tanto de forma oral como escrita, en las lenguas oficiales de la comunidad autónoma
C3 Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C6 Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse
C7 Asumir como profesional y ciudadano la importancia del aprendizaje a lo largo de la vida
C8 Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultura de la sociedad

Resultados de aprendizaje
Resultados de aprendizaje Competencias del título
Conocer y aplicar la geometría diferencial: Conocer las diversas formas de expresar las curvas planas y las curvas alabeadas. Saber reconocer las ecuaciones de algunas curvas. Conocer el concepto de superficie y sus formas de expresión. Saber calcular el plano tangente y la recta normal a una superficie en un punto. Saber hallar las ecuaciones de las distintas clases de superficies. Saber reconocer y manejar las superficies cuádricas. Conocer los conceptos de teoría de curvas y saber hallar los elementos del Triedro de Frenet, así como calcular las curvaturas de flexión y de torsión. Adquirir los conceptos elementales de la geometría diferencial de superficies. Saber hallar las ecuaciones de las líneas asintóticas y de las líneas de curvatura principal. Saber clasificar los puntos de una superficie. Conocer algunas aplicaciones técnicas. A11
A63
B1
B2
B3
B4
B5
B6
B9
C1
C3
C6
C7
C8
Conocer y aplicar el cálculo diferencial e integral: Entender el concepto y propiedades de la integral múltiple. Saber calcular integrales dobles y triples. Saber utilizar las integrales dobles y triples en aplicaciones geométricas y físicas. Adquirir los conceptos fundamentales del análisis vectorial. Conocer el concepto de integral, de un campo escalar y de un campo vectorial, a lo largo de una curva. Conocer y saber aplicar el teorema de Green. Conocer los conceptos de integral de superficie de un campo escalar y de un campo vectorial. Conocer y saber aplicar los teoremas de Gauss y de Stokes. A11
A63
B1
B2
B3
B4
B5
B6
B9
C1
C3
C6
C7
C8

Contenidos
Tema Subtema
Tema 1. Curvas y superficies. 1.1. Curvas planas: Definición. Formas de expresar una curva plana. Algunas curvas planas importantes. Cónicas. Curvas planas definidas en coordenadas polares.
1.2. Curvas alabeadas: Definición. Formas de expresar una curva alabeada.
1.3. Superficies: Definición. Formas de expresar una superficie. Curvas coordenadas. Plano tangente y recta normal.
1.4. Superficies cuádricas.
1.5. Superficies de revolución y de traslación.
1.6. Superficies regladas: Definición. Tipos de superficies regladas. Superficies regladas desarrollables. Superficies regladas alabeadas.
Tema 2. Integración múltiple. 2.1. Concepto de integral múltiple. Propiedades.
2.2. Cálculo de integrales dobles.
2.3. Cambio de variable en integrales dobles.
2.4. Cálculo de integrales triples.
2.5. Cambio de variable en integrales triples.
2.6. Aplicaciones de las integrales múltiples.
2.7. Algunas aplicaciones físicas de las integrales múltiples.
Tema 3. Integración curvilínea y de superficie. 3.1. Conceptos fundamentales del análisis vectorial.
3.2. Integrales de línea para campos escalares y campos vectoriales.
3.3. Teorema de Green.
3.4. Integrales de superficie para campos escalares y campos vectoriales.
3.5. Teorema de Gauss-Ostrogradski. Teorema de Stokes.
Tema 4. Geometría diferencial de curvas. 4.1. Curva alabeada. Arco de curva: Definiciones. Abscisa curvilínea. Elemento diferencial de arco.
4.2. Triedro intrínseco. Elementos del Triedo de Frenet. Ecuaciones.
4.3. Curvatura y torsión de una curva alabeada.
4.4. Fórmulas de Frenet.
4.5. Cálculo de la curvatura y la torsión.
Tema 5. Geometría diferencial de superficies. 5.1. Primera forma fundamental. Propiedades.
5.2. Ángulo de dos curvas sobre una superficie.
5.3. Segunda forma fundamental.
5.4. Curvatura normal.
5.5. Direcciones y líneas asintóticas.
5.6. Direcciones de curvatura principal y líneas de curvatura.
5.7. Curvaturas notables: curvaturas principales, curvatura media y curvatura de Gauss.
5.8. Clasificación de los puntos de una superficie.
5.9. Teorema de Euler.
5.10. Clasificación de algunas superficies por el índice de curvatura de Gauss.
5.11. Aplicaciones.

Planificación
Metodologías / pruebas Competéncias Horas presenciales Horas no presenciales / trabajo autónomo Horas totales
Actividades iniciales A63 B1 B2 B3 B4 1 0 1
Sesión magistral A11 B6 B9 C1 C3 C6 C7 C8 25 30 55
Taller A11 A63 B1 B2 B3 B4 B5 C1 C3 C6 29 56 85
Esquema A11 B3 B5 C3 C7 0 4 4
Prueba objetiva A11 B1 B2 B4 B9 C1 C6 4 0 4
 
Atención personalizada 1 0 1
 
(*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos

Metodologías
Metodologías Descripción
Actividades iniciales En la primera clase del curso se hará una presentación de los contenidos, las competencias y los objetivos que se pretenden alcanzar con esta asignatura.
Sesión magistral Exposición oral complementada con el uso de medios audiovisuales, en la que el profesor presentará los diferentes temas de la materia así como los problemas que el alumno debe aprender a resolver. A lo largo de la misma el alumno podrá intervenir haciendo preguntas que faciliten su instrucción y el profesor planteará preguntas dirigidas a los estudiantes con la finalidad de transmitir conocimientos y facilitar el aprendizaje.
Taller Según se vaya desarrollando la materia el profesor entregará boletines de problemas que los alumnos deberán resolver y/o planteará trabajos. Los boletines de problemas no son exámenes y se recomienda que cada alumno comente con otros estudiantes los problemas difíciles, después de haber tratado de resolverlos y de descubrir donde radica su dificultad, aunque cada cual debe elaborar sus propias soluciones.
Esquema Con esta metodología se pretende que el alumno aprenda a analizar toda la información que ha recibido o recabado sobre un tema, sintetizándola en un esquema que le resulte de ayuda para el repaso y la preparación de exámenes.
Prueba objetiva Examen teórico-práctico de la materia impartida.

Atención personalizada
Metodologías
Esquema
Taller
Sesión magistral
Descripción
A lo largo del curso cada alumno deberá realizar con el profesor dos sesiones de 30 minutos cada una. En ellas el profesor resolverá las dudas que le presente el alumno y le indicará la adecuación de sus esquemas a la materia trabajada.

Evaluación
Metodologías Competéncias Descripción Calificación
Prueba objetiva A11 B1 B2 B4 B9 C1 C6 La evaluación del alumno se realizará mediante un examen final (que integra dos pruebas teórico-prácticas), según se explica en las observaciones. 100
 
Observaciones evaluación

Primera oportunidad (mayo): La materia de esta
asignatura se divide en dos bloques: el estudio de curvas y superficies junto con la ampliación del cálculo integral por una parte, y la geometría diferencial de curvas y superficies por otra. Para superar la asignatura en primera oportunidad será necesario aprobar las dos pruebas teórico-prácticas correspondientes a la materia de cada parte.

Para aquellos alumnos que hayan asistido al menos al 70% de las clases se realizará, al final del primer bloque, un examen parcial liberatorio de materia.

Los alumnos que no superen ese examen parcial o que no hayan asistido al 70% de las clases, realizarán el día del examen final una prueba teórico-práctica de cada bloque. Los que lo hayan aprobado sólo tendrán que realizar la prueba
teórico-práctica correspondiente a la materia del segundo bloque.

La
nota final de la asignatura será la media aritmética de las notas obtenidas en cada bloque (una vez aprobados). En la calificación final del estudiante se tendrá en cuenta también el interés y participación en las sesiones presenciales, así como la realización y exposición individual de los ejercicios propuestos.

Los
alumnos que, presentándose al examen final, no aprueben la materia
correspondiente a las dos bloques, tendrán la calificación
de suspenso en primera oportunidad.

Segunda oportunidad (julio): Los
alumnos que no hayan superado la materia en la primera oportunidad
disponen de una segunda oportunidad para superarla. La evaluación del
estudiante en esta segunda oportunidad se realizará mediante un examen
global de toda la asignatura, cuya calificación proporcionará la nota
final de la misma.


Fuentes de información
Básica Larson, R. E.; Hostetler, R. P.; Edwards, B. H. (2003). Cálculo II. Madrid. Ed. Pirámide
Stoker, J.J. (1989). Differential Geometry. New York, Wiley Classics Edition
López de la Rica, A (1997). Geometría Diferencial . Madrid. Glagsa

Complementária Demidovich (1998). 5000 problemas de Análisis Matemático.. Ed. Paraninfo
Marsden, J.; Tromba, A (2004). Cálculo Vectorial.. Pearson Educación, S.A. Madrid
García López y otros (1996). Cálculo II. Teoría y problemas de funciones de varias variables.. Ed. GLAGSA
Rogawski, Jon (2012). Cálculo: varias variables. . Ed. Reverté, S.A. Barcelona
Martínez Sagarzazu, E. (1996). Ecuaciones Diferenciales y Cálculo Integral.. Serv. Ed. de la Univ. del País Vasco
Bolgov, Demidovich y otros. (1983). Problemas de las Matemáticas Superiores. . Ed. Mir, Moscú
Lipschutz, Martin M. (1971). Teoría y problemas de geometría diferencial.. McGraw-Hill, México


Recomendaciones
Asignaturas que se recomienda haber cursado previamente
Matemáticas para la Arquitectura 1/630G02004

Asignaturas que se recomienda cursar simultáneamente

Asignaturas que continúan el temario

Otros comentarios


(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías