Identifying Data 2015/16
Subject (*) Métodos de Cálculo Numérico Code 730112620
Study programme
Enxeñeiro Naval e Oceánico
Descriptors Cycle Period Year Type Credits
First and Second Cycle 2nd four-month period
Fourth-Fifth Optativa 3.5
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Enxeñaría Naval e Oceánica
Coordinador
Fariñas Alvariño, Pablo
E-mail
pablo.farinas@udc.es
Lecturers
Fariñas Alvariño, Pablo
E-mail
pablo.farinas@udc.es
Web
General description Nesta materia abordanse os fundamento e aplicación das técnicas de cálculo numérico aplicadas a hidrodinámica naval. O curso basease no método dos volumes finitos e perséguese que o alumno acade un nivel de coñecemento que lle permita abordar de xeito autónomo a modelaxe numérica de problemas navais fundamentais.

Study programme competencies
Code Study programme competences / results
A1 Aplicar os fundamentos da Enxeñaría Naval e Oceánica.
A2 Modelar matematicamente sistemas e procesos complexos de todos os ámbitos da Enxeñaría Naval e Oceánica.
A3 Desenvolver, programar e aplicar métodos analíticos e numéricos para a análise de modelos lineais e non lineais de todos os ámbitos da Enxeñaría Naval e Oceánica.
A4 Participación en proxectos de investigación.
A5 Modelizar matemática e computación en centros tecnolóxicos e de enxeñaría naval e oceánica.
A6 Participación en proxectos multidisciplinares de enxeñaría naval e oceánica.
A7 Proxectos e cálculo de produtos, procesos, instalacións e factorías navais en todos os ámbitos do sector naval e marítimo.
A8 Investigación, desenvolvemento e innovación en produtos, procesos e métodos relacionados co sector naval e marítimo.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B5 Traballar de forma colaborativa.
B10 Actitude orientada á análise.
B12 Capacidade para encontrar e manexar a información.
B13 Capacidade de comunicación oral e escrita.
B14 Manexo de sistemas asistidos por ordenador.
B15 Concepción espacial.
B17 Analizar e descompoñer procesos.
B18 Capacidade de abstracción, comprensión e simplificación de problemas complexos.
C1 Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.
C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C4 Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C5 Entender a importancia da cultura emprendedora e coñecer os medios ao alcance das persoas emprendedoras.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Learning outcomes Study programme competences / results
Knowing and understanding the numerical model based on the fundamental equations. Modelling and understanding the fundamental phenomenologies which govern the naval hydrodynamics. Analyzing the computational results, from a general perspective, in complex ship hydrodynamic cases. A1
A2
A3
A4
A5
A6
A7
A8
B1
B2
B3
B5
B10
B12
B13
B14
B15
B17
B18
C1
C2
C3
C4
C5
C6
C7
C8

Contents
Topic Sub-topic
Remembering conservation laws: Conservation laws (mass and momentum).
Partial differential equations (elliptic, parabolic and hyperbolic).
Discretization methods (FVM, FEM, FD).
Pure diffusion: Discretization for the one dimensional case.
Extension for 2D and 3D cases.
Implementing cases.
Combined diffusion and advection: Discretization approach and different interpolation schemes families
Classical interpolation schemes family.
Power law interpolation schemes family.
Normalized variable diagram interpolation schemes family.
Total variation diminishing interpolation schemes family.
Implementing cases.
Pressure velocity coupling algorithms: Introduction to the closure problem.
Numerical versus physical incompressibility.
Staggered grids.
SIMPLE/ER/C and PISO methods for staggered grids.
SIMPLE/ER/C and PISO methods for collocated grids.
Implementing cases.
Linear equations systems: Sparse matrix systems.
Point to point, line to line and plane to plane methods.
High and low frequency errors. Multigrid methods.
Conjugate gradient method.
Implementing cases
Unsteady problems: Explicit, implicit and fully implicit schemes in 1D transient pure diffusive case.
Extension to 3D case.
Combined advection diffusion transient case.
Transient pressure velocity coupling.
Implementing cases.
Special Boundaries: Remembering Dirichlet and von Newmann boundaries.
Combined boundary conditions.
Wall laws.
Special boundaries.
Free surface.
Cases over commercial software: Proposed cases by the professor.

Planning
Methodologies / tests Competencies / Results Teaching hours (in-person & virtual) Student’s personal work hours Total hours
Introductory activities A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B5 B10 B12 B14 B15 B17 B18 C2 C3 C4 C5 C6 C7 C8 2 2 4
Guest lecture / keynote speech A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B5 B10 B12 B14 B15 B17 B18 C2 C3 C4 C5 C6 C7 C8 20 25.5 45.5
Case study A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B5 B10 B12 B14 B15 B17 B18 C2 C3 C4 C5 C6 C7 C8 5 1 6
Problem solving A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B5 B10 B12 B13 B14 B15 B17 B18 C1 C2 C3 C4 C5 C6 C7 C8 1 5 6
Simulation A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B5 B10 B12 B13 B14 B15 B17 B18 C1 C2 C3 C4 C5 C6 C7 C8 14 7 21
Objective test C1 4 0 4
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Introductory activities Remembering fluid mechanics fundamentals.
Guest lecture / keynote speech Are the typical lectures.
Case study Cases resolutions solved during the lectures.
Problem solving Autonomous homework on implementing cases.
Simulation Running a commercial solver.
Objective test Is the exam.

Personalized attention
Methodologies
Problem solving
Guest lecture / keynote speech
Simulation
Description
Is the support for the homework development.

Assessment
Methodologies Competencies / Results Description Qualification
Objective test C1 Is the exam. 60
Problem solving A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B5 B10 B12 B13 B14 B15 B17 B18 C1 C2 C3 C4 C5 C6 C7 C8 It is compulsory, under professor demand, to deliver the proposed home tasks and simulations on time along this course. The delivered tasks and simulations will be assessed by the professor and will be considered for the final qualification. 20
Simulation A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B5 B10 B12 B13 B14 B15 B17 B18 C1 C2 C3 C4 C5 C6 C7 C8 It is compulsory, under professor demand, to deliver the proposed home tasks and simulations on time along this course. The delivered tasks and simulations will be assessed by the professor and will be considered for the final qualification. 20
 
Assessment comments

Sources of information
Basic Hildebrand F.B. (1976). Advanced calculus for applications. Prentice hall
Pablo Fariñas (2013). Apuntes de clase.
Versteeg H.K. & Malalasekera W. (1995). Computational fluid dynamics, the finite volume method.. Longmann
Maliska C.R. (1995). Transferencia de calor e mecánica de fluidos computacional.. LTC editora

Complementary


Recommendations
Subjects that it is recommended to have taken before
CALCULUS/730G01101
PHYSICS I/730G01102
ENGINEERING DRAWING/730G01103
LINEAR ALGEBRA/730G01106
PHYSICS II/730G01107
INTRODUCTION TO COMPUTER SCIENCE AND PROGRAMMING/730G01109
DIFFERENTIAL EQUATIONS/730G01110
THERMODYNAMICS/730G01115
MECHANICS/730G01118
STATISTICS/730G01111
ELASTICITY AND STRENGTH OF MATERIALS/730G01117
FLUID MECHANICS/730G01119
SHIP´S HYDROSTATIC AND STABILITY/730G01122
NAVAL STRUCTURES 1/730G01125
NAVAL STRUCTURES 2/730G01126
MARINE HYDRODINAMIC/730G01127

Subjects that are recommended to be taken simultaneously
SHIP NOISE AND VIBRATIONS/730G01121
3D MODEL OF HULL AND SHIP STRUCTURE /730G01166

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.