Identifying Data 2015/16
Subject (*) Métodos numéricos aplicados a medios continuos Code 730496022
Study programme
Mestrado Universitario en Enxeñaría Naval e Oceánica (plan 2012)
Descriptors Cycle Period Year Type Credits
Official Master's Degree 1st four-month period
First Optativa 4.5
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Enxeñaría Naval e Oceánica
Coordinador
Fariñas Alvariño, Pablo
E-mail
pablo.farinas@udc.es
Lecturers
Fariñas Alvariño, Pablo
Mendez Diaz, Abel
E-mail
pablo.farinas@udc.es
abel.mendez@udc.es
Web
General description Nesta materia abordanse os fundamento e aplicación das técnicas de cálculo numérico aplicadas a mecánica naval. O curso basease no método dos volumes finitos e perséguese que o alumno acade un nivel de coñecemento que lle permita abordar de xeito autónomo a modelaxe numérica de problemas navais fundamentais.

Study programme competencies
Code Study programme competences
A2 Coñecemento avanzado da hidrodinámica naval para a súa aplicación á optimización de carenas, propulsores e apéndices.
A3 Coñecemento da dinámica do buque e das estruturas navais, e capacidade para realizar análise de optimización da estrutura da integración dos sistemas a bordo, e do comportamento do buque no mar e da súa manobrabilidade.
A7 Capacidade para proxectar plataformas e artefactos oceánicos.
A10 Coñecemento dos sistemas de posicionamento e da dinámica de plataformas e artefactos.
A13 Coñecemento da enxeñaría de sistemas aplicada á definición dun buque, artefacto ou plataforma marítima mediante a análise e optimización do seu ciclo de vida.
B1 Posuír e comprender coñecementos que acheguen unha base ou oportunidade de ser orixinais no desenvolvemento e/ou aplicación de ideas, a miúdo nun contexto de investigación
B2 Que os estudantes saiban aplicar os coñecementos adquiridos e a súa capacidade de resolución de problemas en ámbitos novos ou pouco coñecidos dentro de contextos máis amplos (ou multidisciplinares) relacionados coa súa área de estudo
B3 Que os estudantes sexan capaces de integrar coñecementos e enfrontarse á complexidade de formular xuízos a partir dunha información que, sendo incompleta ou limitada, inclúa reflexións sobre as responsabilidades sociais e éticas vinculadas á aplicación dos seus coñecementos e xuízos
B4 Que os estudantes saiban comunicar as súas conclusións e os coñecementos e razóns últimas que as sustentan a públicos especializados e non especializados dun modo claro e sen ambigüidades.
B5 Que os estudantes posúan as habilidades de aprendizaxe que lles permitan continuar estudando dun modo que haberá de ser en boa medida autodirixido ou autónomo.
B6 Ser capaz de realizar unha análise crítica, avaliación e síntese de ideas novas e complexas.
B7 Falar ben en público
C1 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.

Learning aims
Learning outcomes Study programme competences
Knowing and understanding the numerical model based on the fundamental equations. Modelling and understanding the fundamental phenomenologies which govern the naval hydrodynamics. Analyzing the computational results, from a general perspective, in complex ship hydrodynamic cases. AC2
AC3
AC7
AC10
AC13
BC1
BC2
BC3
BC4
BC5
BC6
BC7
CC1

Contents
Topic Sub-topic
Remembering conservation laws: Conservation laws (mass and momentum).
Combined convection / diffusion
Pressure velocity coupling algorithms: Introduction to the closure problem.
Numerical versus physical incompressibility.
Staggered grids.
SIMPLE/ER/C and PISO methods for staggered grids.
SIMPLE/ER/C and PISO methods for collocated grids.
Implementing cases.
Linear equations systems: Sparse matrix systems.
Point to point, line to line and plane to plane methods.
High and low frequency errors. Multigrid methods.
Conjugate gradient method.
Implementing cases
Unsteady problems: Explicit, implicit and fully implicit schemes in 1D transient pure diffusive case.
Extension to 3D case.
Combined advection diffusion transient case.
Transient pressure velocity coupling.
Implementing cases.
Special Boundaries: Remembering Dirichlet and von Newmann boundaries.
Combined boundary conditions.
Wall laws.
Special boundaries.
Free surface.
Cases over commercial software: Proposed cases by the professor.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Introductory activities A2 A3 A7 A10 A13 B2 B3 B5 B6 C1 2 1 3
Guest lecture / keynote speech A2 A3 A7 A10 A13 B1 B2 B3 B5 B6 C1 25 25 50
Case study A2 A3 A7 A10 A13 B1 B2 B3 B5 B6 C1 8 8 16
Simulation A2 A3 A7 A10 A13 B2 B3 B4 B5 B6 B7 C1 7 31.5 38.5
Objective test B2 B6 C1 3 0 3
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Introductory activities Remembering mechanics fundamentals.
Guest lecture / keynote speech Are the typical lectures.
Case study Cases resolutions solved during the lectures.
Simulation Running a commercial solver.
Objective test Is the exam.

Personalized attention
Methodologies
Guest lecture / keynote speech
Simulation
Description
Is the support for the homework development.

Assessment
Methodologies Competencies Description Qualification
Simulation A2 A3 A7 A10 A13 B2 B3 B4 B5 B6 B7 C1 It is compulsory, under professor demand, to deliver the proposed home tasks and simulations on time along this course. The delivered tasks and simulations will be assessed by the professor and will be considered for the final qualification. 40
Objective test B2 B6 C1 Is the exam. 60
 
Assessment comments

In order to pass this subject it is necessary to achieve a qualification above four over ten in the exam. It is also necessary to deliver the required homework in the correct manner and up to the limiting required time. In case the homework is not delivered in the correct way and time the pupil will loose the possibility to pass this subject.


Sources of information
Basic Hildebrand F.B. (1976). Advanced calculus for applications. Prentice hall
Pablo Fariñas (2013). Apuntes de clase.
Versteeg H.K. & Malalasekera W. (1995). Computational fluid dynamics, the finite volume method.. Longmann
Maliska C.R. (1995). Transferencia de calor e mecánica de fluidos computacional.. LTC editora

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously
Hidrodinámica naval avanzada/730496002
Deseño e optimización de estructuras navais/730496003
Ampliación de hidrostática e hidrodinámica/730496020

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.