Identifying Data 2016/17
Subject (*) Edafoloxía Code 610G02045
Study programme
Grao en Bioloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Fourth Optativa 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Ciencias da Navegación e da Terra
Coordinador
Paz Gonzalez, Antonio
E-mail
antonio.paz.gonzalez@udc.es
Lecturers
Paz Gonzalez, Antonio
Vidal Vázquez, Eva
E-mail
antonio.paz.gonzalez@udc.es
eva.vidal.vazquez@udc.es
Web
General description La asistencia a las actividades presenciales es obligatoria y la participación activa del alumno en todas las actividades docentes se valorará positivamente en la calificación final.

EVALUACIÓN CONTÍNUA
Para superar la asignatura,en evaluación continua, será necesario:
- Haber asistido al menos al 90% de las clases magistrales y seminarios.
- Haber realizado y superado las prácticas de laboratorio dentro de losgrupos convocados durante el curso.
- Haber entregado el Trabajo Fin de Curso.
- Obtener una calificación igual o superior a cinco aplicando los criterios que se especifican a continuación:
o Haber realizado y superado cada uno de los controles.
o Controles escritos, seminarios y otras actividades docentes (70%).
o Prácticas de laboratorio (20%).
o Presentación oral, proyecto y trabajos tutelados (10%)

EVALUACIÓN FINAL
Aquellos estudiantes que no superen la asignatura mediante la evaluación continua, podrán aprobarla en la convocatoria ordinaria o en la segunda oportunidad con los siguientes criterios:
- Obtener una calificación igual o superior a cinco aplicando los criterios que se especifican a continuación.
o Superar el examen final escrito (50%).
o Controles escritos, seminarios y otras actividades docentes(30%).
o Prácticas de laboratorio (20%).

Study programme competencies
Code Study programme competences
A1 Recoñecer distintos niveis de organización nos sistemas vivos.
A6 Catalogar, avaliar e xestionar recursos naturais.
A18 Levar a cabo estudos de produción e mellora animal e vexetal.
A20 Muestrear, caracterizar e manexar poboacións e comunidades.
A21 Deseñar modelos de procesos biolóxicos.
A22 Describir, analizar, avaliar e planificar o medio físico.
A23 Avaliar o impacto ambiental. Diagnosticar e solucionar problemas ambientais.
A24 Xestionar, conservar e restaurar poboacións e ecosistemas.
A26 Deseñar experimentos, obter información e interpretar os resultados.
A27 Dirixir, redactar e executar proxectos en Bioloxía.
A28 Desenvolver e implantar sistemas de xestión relacionados coa Bioloxía.
A29 Impartir coñecementos de Bioloxía.
A30 Manexar adecuadamente instrumentación científica.
A31 Desenvolverse con seguridade nun laboratorio.
A32 Desenvolverse con seguridade no traballo de campo.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B4 Traballar de forma autónoma con iniciativa.
B5 Traballar en colaboración.
B6 Organizar e planificar o traballo.
B7 Comunicarse de maneira efectiva nunha contorna de traballo.
B8 Sintetizar a información.
B9 Formarse unha opinión propia.
B10 Exercer a crítica científica.
B11 Debater en público.
B12 Adaptarse a novas situacións.
B13 Comportarse con ética e responsabilidade social como cidadán e como profesional.
C1 Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.
C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C4 Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C5 Entender a importancia da cultura emprendedora e coñecer os medios ao alcance das persoas emprendedoras.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Learning outcomes Study programme competences
The program includes environmental impact studies, taken into account soil diversity. Problems driven by soil contamination and soil restoration are also considered. A1
A6
A20
A21
A28
A31
B5
B8
C3
C6
C7
Because of the role of the soil for terrestrial ecosystems, Edaphology has a particular interest in Environmental Biology. The soil food chain describes a complex living system and how it interacts with the environment, plants, and animals. The nature of soil makes direct observation of food webs difficult. Soil microbial communities are characterized in many different ways. The activity of microbes can be measured by their respiration and carbon dioxide release. The cellular components of microbes can be extracted from soil and genetically profiled, or microbial biomass can be calculated by weighing the soil before and after fumigation. A6
A20
A22
A26
A29
B3
B6
B10
B11
C1
C5
C6
The course of Soil Science is designed to provide an overview of the fundamental: Physical processes, Chemical processes, Fertility, Biology, and Land Use. Both theoretical and practical contents in soil science should contribute to enhance the skills of Biology students at the UDC in the use of several instrumental techniques. A1
A18
A21
A27
A31
A32
B1
B5
B7
B8
C2
C3
C7
The scientific study of the soil is important for Biologists, mainly from an ecological perspective. Soil is essential in environmental studies and soil science contributes to understand important processes such as biogeochemical cycles, the structure ecosystems and factors from which primary production depends. A6
A20
A23
A24
A28
A30
B2
B4
B6
B9
B12
C2
C5
Soils act as substrates for vegetal communities and also as adsorbent and absorbent for nutritive, and allow life of many animal and vegetal organisms. Therefore our program pays particular attention to the “edaphosphere” as a complex dynamic and organised site, located in the interface between biosphere, lithosphere, hydrosphere and atmosphere. Soil is also the support of man-made spaces or sites influenced by man activity, such as urban-industrial areas and transport infrastructures. A6
A23
A27
A31
B3
B5
B6
C2
C4
C8
El suelo actúa como sustrato de las comunidades vegetales, y soporta la vida de numerosos organismos vegetales y animales. Por tanto, se presta particular atención al análisis de la edafosfera como un medio organizado, complejo y dinámico, en la zona de contacto entre la biosfera, la litosfera, la hidrosfera y la atmósfera. A1
A18
A21
A23
A30
B2
B4
B6
B13
C2
C4
C7

Contents
Topic Sub-topic


PRELIMINARY CONCEPTS Lesson 1.- History of Soil Science. Lesson 2.- Soil descripton in field conditions. Laboratory techniques for soil studies.
Origin and development of Soils Science. Main topics in Soil Science.


Profile and horizons. Physical, Chemical and Bioñogical methods of soil analysis.



SOIL SYSTEMATICS AND CLASSIFICATION Lesson 13.- Soil Systematics. Lesson 14.- Introduction to Soil Taxonomy. Lesson 15.- World Reference Base for Soil Resources. Lesson 16.- Spanish and Galician Soils.


Bulk density and solid density. Soil porosity. Pore-size distribution. Aggregate dynamics in soils. Structural stability.

Soil moisture content and soil potential. Soil water measurement. Soil moisture characteristic curve. Soil water retention and soil water dynamics. Soil water and water requirements of vegetation.

Soil thermal properties. Soil temperature management. Composition of the soil atmosphere. Soil and gases of greenhouse effect.

Soil pH and soil acidity. Soil acidity effects. Acidity amendment. Exchange complex of soils. Cation exchange capacity.

Soil organisms. Soil enzymatic activity. Nucleic acids in soil. Soil organism and soil properties as indicators of soil quality.

Macronutrients and micronutrients. Nitrogen , phosphorus and potassium cycles. Calcium and magnesium. Iron, cupper, zinc, boron
and molybdenum. Other oligoelements.


Parent material. Climate. Topography. Times Vegetations and organisms. Anthropogenic factors.

Soil profile differentiation. Clay accumulation. Podzolization. Salinization. Calcification. Hydromorphic processes. Ferralitic alteration.


Genesic and diagnostic horizons. Soil profile. Horizon nomenclature.
Modern Soil Classifications. Soil Taxonomy. World Reference Base for
Soil Resources.

Characteristics for soil diagnosis. Moisture and temperature regimes. Oreders, suborders, great groups, subgroups, families, and series.

Organic soil. Soil with anthropic influences. Soils conditiones by topography and by time. Soils condiciones by cold, temperate, steppe, arid or semiarid and tropical or subtropical climates.

Soil under Atlantic climate. Soils under Mediterranean climate. Galician soils: parent material, climate, topography and vegetation effects.



APPLIED SOIL SCIENCE Lesson 17.- Applications of Soil Science.
Soil cartography.
Interactions soil-landscape.
Soil functions and society.
Soil and environment.
Soil contamination.
Recovery of contaminated soils.
Soil Use and Management.



PRACTICAL ACTIVITIES Laboratory Field studies
Textural analysis
Bulk density and solid density, Porosity.
Aggregate stability
Soil pH.
Organic carbon and nitrogen
Cation exchange capacity
Soil extractable phosphorus
Bological activity and dehydrogenase activity



COMPULSORY TUTORIAL SUBJECTS
Soil biological quality indicators
Soil biodiversity
Soil organisms
Erosion as a source of diffuse contamination
Effect of forest fires on soil degradation
Contamination by mining activities
Contamination by organic substances
Physico-chemical indicators of soil quality
Vineyiard soils in Galicia
Compaction risks
Soil water balance
Heavy metals in soils
Other

FIELD TRIP
Soil Observation

Horizon description


Presentation
Presentation


Discussion

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Supervised projects A6 A18 A20 A21 A22 A26 A29 A30 A31 B2 B3 B10 B13 4 10 14
Document analysis B1 B4 B5 B6 B12 C1 C2 C7 2 6 8
Oral presentation A20 A22 B4 B7 C4 C8 2 8 10
Guest lecture / keynote speech A1 A20 A23 A24 A27 A28 B7 B8 B9 B11 C3 C4 C6 20 40 60
Case study A1 A18 A32 B2 B12 C3 C1 2 6 8
Research (Research project) A6 A22 B4 C5 C7 1 8 9
Laboratory practice A22 A32 B1 C3 C1 14 11 25
Field trip A1 A20 A22 A30 A32 B1 B4 B10 B11 4 2 6
 
Personalized attention 10 0 10
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Supervised projects Mainly related to application of Soil Science as well as soil classification
Document analysis Results should be summarized
Oral presentation Quality and contetn of the presentation
Guest lecture / keynote speech Public presentation. Here, the contens of soil science will be developed.
The used audiovisual materials will be provided to students.
Case study Activity related to to keynote speech
Research (Research project) Developed in laboratory and in the field
Laboratory practice Analysis of basic soil physical, chemical and biological properties.
Field trip The main soil types in Galicia will be observed.

Personalized attention
Methodologies
Oral presentation
Document analysis
Supervised projects
Description
Personalized attention will be provided by individual meetings in dates previously selected.

Assessment
Methodologies Competencies Description Qualification
Oral presentation A20 A22 B4 B7 C4 C8 Quality of the reports and presentations. 20
Document analysis B1 B4 B5 B6 B12 C1 C2 C7 Quality of the documents 30
Supervised projects A6 A18 A20 A21 A22 A26 A29 A30 A31 B2 B3 B10 B13 Outcome of the projects 50
 
Assessment comments

Sources of information
Basic Armstrong M, (2004). Basic Linear Geostatistics,. Springer

Complementary


Recommendations
Subjects that it is recommended to have taken before
Xeografía: Xeografía física/610G02006
Xeoloxía/610G02004

Subjects that are recommended to be taken simultaneously
Modelos Numéricos de Hidrálica e Contaminación de Medios Porosos/632508010

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.