Datos Identificativos 2016/17
Asignatura (*) DISEÑO Y CONSTRUCCIÓN DE COMPLEJOS INDUSTRIALES Y EMPRESARIALES Código 730G04067
Titulación
Grao en enxeñaría en Tecnoloxías Industriais
Descriptores Ciclo Periodo Curso Tipo Créditos
Grado 1º cuatrimestre
Cuarto Optativa 6
Idioma
Castellano
Gallego
Inglés
Modalidad docente Presencial
Prerrequisitos
Departamento Enxeñaría Industrial 2
Coordinador/a
Caño Gochi, Alfredo del
Correo electrónico
alfredo.cano@udc.es
Profesorado
Caño Gochi, Alfredo del
Castro Rascado, Alberto
Correo electrónico
alfredo.cano@udc.es
alberto.castro@udc.es
Web http://moodle.udc.es/my/
Descripción general Complementos á parte de construcións industriais da materia "Análise e deseño de estruturas e construcións industriais", en materia de concepción, proxecto e execución de fábricas e complexos industriais e empresariais máis frecuentes, no relativo ás súas instalacións de proceso, as instalacións xerais e auxiliares de proceso, e as edificacións necesarias para os devanditos complexos, en canto á súa obra grosa e instalacións.

Contido. Aspectos xerais. Sustentabilidade na construción. Plantas e complexos industriais. Materiais de construción. Cimentacións e estruturas. Cubertas, fachadas e particións. Abastecemento e evacuación de auga. Protección contra incendios. Ventilación, calefacción e climatización. Electricidade. Tipoloxía edificatoria.

------------------------------------------------------
DESIGN AND CONSTRUCTION OF INDUSTRIAL AND ENTREPRENEURIAL COMPLEXES

Supplements to a previous subject related to the design of industrial buildings.

Introduction to industrial and entrepreneurial complexes. The factory and the industrial complex. The entrepreneurial complex. Project participants. Main procurement methods. Sustainability. Infrastructures, facilities and buildings that may include a complex. Process plants. General facilities. Facilities ancillary to the processing plant. Manufacturing and storage buildings. Offices. Laboratories. R+D+I Centers. Buildings for energy production plants. Other buildings.

The soil, foundations and structures. Most common types.

Roofing, facades, partitions and interior finishes. Most common types.

Building services. Water supply and evacuation. Fire protection. Ventilating, heating and air conditioning. Electrical services.

Competencias del título
Código Competencias del título
B2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B7 Ser capaz de realizar un análisis crítico, evaluación y síntesis de ideas nuevas y complejas.
C3 Entender la importancia de la cultura emprendedora y conocer los medios al alcance de las personas emprendedoras.
C4 Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse.
C5 Asumir como profesional y ciudadano la importancia del aprendizaje a lo largo de la vida.

Resultados de aprendizaje
Resultados de aprendizaje Competencias del título
Capacidad de participar en la redacción del proyecto conceptual de complejos industriales y empresariales Realiza el proyecto básico de las construcciones industriales y empresariales más frecuentes. Conocimiento de los fundamentos para la supervisión y la dirección de la ejecución de una obra. B2
B3
B4
B5
B7
C3
C4
C5

Contenidos
Tema Subtema
1. Introducción a los complejos industriales y empresariales. Instalaciones de proceso. Instalaciones generales y auxiliares de proceso. La fábrica y el complejo industrial. El complejo empresarial. Participantes en el proyecto y principales sistemas de contratación. La sostenibilidad. Infraestructuras, instalaciones y edificaciones que puede incluir un complejo. Instalaciones de proceso. Instalaciones generales y auxiliares de proceso. Naves de fabricación y almacenaje. Oficinas. Laboratorios. Centros de I+D+i. Otras edificaciones.
2. Materiales de construcción. Características, componentes, principales propiedades, ventajas, inconvenientes y campos de aplicación: acero; hormigón armado y pretensado. Materiales no estructurales.
3. El terreno, cimentaciones y estructuras. Tipos más frecuentes; características de los mismos e introducción a su diseño y ejecución; ventajas, inconvenientes y campos de aplicación de los diferentes tipos. Esquemas estructurales de cálculo de los principales tipos de estructuras usados en complejos industriales y empresariales. Trazado a estima de reacciones, elástica y leyes de solicitaciones.
4. Edificación. Principales características de los sistemas constructivos de los edificios más frecuentes en complejos industriales y empresariales. Naves de fabricación y almacenaje. Oficinas. Laboratorios. Centros de I+D+i.

Planificación
Metodologías / pruebas Competéncias Horas presenciales Horas no presenciales / trabajo autónomo Horas totales
Sesión magistral B7 C3 C4 C5 24 24 48
Prácticas de laboratorio C4 4 4 8
Estudio de casos B2 B3 B4 B5 B7 C3 C4 C5 32 52 84
 
Atención personalizada 10 0 10
 
(*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos

Metodologías
Metodologías Descripción
Sesión magistral Exposición oral complementada con el uso de medios audiovisuales y la introducción de algunas preguntas dirigidas a los estudiantes, con la finalidad de transmitir conocimientos y facilitar el aprendizaje.
Prácticas de laboratorio Se realizará, en pequeños grupos, una práctica de laboratorio consistente en preparar hormigón a partir de sus componentes, preparar probetas de ensayo, y ensayarlas para comprobar la resistencia del hormigón preparado. Con dicho hormigón se fabricarán también vigas de hormigón armado que serán ensayadas en el laboratorio. Esta práctica será voluntaria.

Estas prácticas se realizan en el Laboratorio de Ingeniería de la Construcción. Se trata de un laboratorio docente que cuenta, por ahora, con un puente grúa de 10 t.; una zona de obra para la preparación de hormigones (con cubeto de limpieza y descontaminación de aguas); amasadora de hormigón; equipo de refrentado de probetas de hormigón (con instalación de extracción de gases de refrentado); instalación para conservación de probetas de hormigón; prensa de hormigones de 300 t / 3.000 kN para ensayo tradicional de probetas cilíndricas a compresión y mediante ensayo brasileño; y un pórtico de 30t de ensayo a flexión y cortante de vigas, y a compresión de pequeños soportes; entre otros equipos de ensayo.

Los alumnos deberán acudir a la práctica con ropa y calzado adecuados para ello. Los materiales de la práctica pueden estropear la ropa y calzado, y por ello se recomienda llevar botas de obra o similares y mono de trabajo.

La realización de estas prácticas, al margen de suponer afrontar ciertos costes, implica la necesidad de abordar diversos problemas organizativos y de ejecución de tareas que hacen imposible la realización individual de estas prácticas. Es imposible, físicamente, que una sola persona realice esta práctica. Por ello deberá realizarse, obligatoriamente, en grupo, sin ser posible excepción alguna.

Esta actividad de laboratorio es voluntaria, y queda supeditada a la oportuna asignación, por parte de la UDC, del personal técnico de laboratorio y de los fondos económicos que resultan necesarios para todo lo dicho.
Estudio de casos Metodología donde el sujeto se enfrenta ante la descripción de una situación específica que plantea un problema que ha de ser comprendido, valorado y resuelto por un grupo de personas, a través de un proceso de discusión. El alumno se sitúa ante un problema concreto (caso), que le describe una situación real de la vida profesional, y debe ser capaz de analizar una serie de hechos, referentes a un campo particular del conocimiento o de la acción, para llegar a una decisión razonada a través de un proceso de discusión en pequeños grupos de trabajo.

Atención personalizada
Metodologías
Estudio de casos
Prácticas de laboratorio
Sesión magistral
Descripción
El profesor atenderá en tutorías a cada alumno que lo requiera para resolver dudas sobre teoría o casos prácticos.

La atención al alumno podrá ser dentro o fuera de los horarios oficiales de tutorías si bien, para evitar esperas innecesarias al alumno, tanto en un caso como en el otro, siempre la fecha y hora se acordarán previamente a través correoE o teléfono.

Las cifras de atención personalizada recogidas en la planificación son orientativas.

Evaluación
Metodologías Competéncias Descripción Calificación
Estudio de casos B2 B3 B4 B5 B7 C3 C4 C5 La evaluación se realizará en base a la entrega de un conjunto de casos prácticos resueltos por el alumno. Véase lo dicho más abajo, en las observaciones. 100
 
Observaciones evaluación

Los alumnos que asistan a menos de un 90% de las clases tendrán el mismo sistema de evaluación, pero deberán realizar trabajos de las sesiones prácticas a las que no asistan.

Los alumnos que no superen la evaluación continua (casos prácticos) podrán realizar sendos exámenes, en las fechas oficiales de examen que establezca la escuela.

Los criterios básicos de corrección de las actividades de la asignatura son los siguientes:

(1) La nota de un caso práctico será nula si la respuesta dada o el diseño realizado: 

(1.1) No incluye justificación adecuada de la decisión tomada o, en general, de la respuesta que se pedía.

(1.2) Suponen riesgo para la vida de las personas que tienen que ejecutar la obra o usar la instalación que se construiría en base a dicho diseño.

(1.3) O no respeta alguno de los requisitos imprescindibles que el enunciado haya establecido. 

(2) Si la solución es válida y cumple todos los requisitos imprescindibles del enunciado, la nota mínima será de 5 puntos sobre 10. Si además cumple con las preferencias (requerimientos no imprescindibles, que resulten ser factibles) establecidas en el enunciado, la nota mínima será de 8 puntos sobre 10. Ambas notas podrán aumentar en función de que sea una solución mejor que otras que también cumplan los requisitos o preferencias del enunciado, y en función de otros criterios no definidos en el enunciado, como podrían ser la eficiencia estructural, la facilidad de diseño y ejecución, estética o el grado de sostenibilidad, entre otros (salvo que estos aspectos fuesen requerimientos del enunciado). 

(3) Si la redacción realizada por el alumno no es clara, o no se entiende, la puntuación podrá bajar, incluso, hasta cero puntos, si dicha redacción puede dar lugar a malentendidos que supongan riesgo para la vida de las personas o puedan llevar a que no se respete alguno de los requisitos imprescindibles que el enunciado haya establecido. Téngase en cuenta que la misión del ingeniero es hacer proyectos que sean fácilmente inteligibles, de manera que los contratistas e instaladores y, sobre todo, sus operarios, con una formación a veces muy inferior a la del técnico competente, interpreten adecuadamente sus documentos. 

(4) En el caso de cálculo y dimensionamiento, si el dimensionamiento es insuficiente, la nota será nula. Un sobredimensionado no justificable llevará al mismo resultado. La nota será máxima en caso de dimensionados adecuados, cuando el alumno aporta todas las justificaciones y cálculos oportunos de forma que estos son claros y la redacción del documento es ordenada y clara, incluyendo todo lo que pide el enunciado.


Fuentes de información
Básica del Caño, A., de la Cruz, M.P. (2016). Apuntes de la asignatura.

Complementária
Aspectos generales de la edificación.
• Allen E (2013). Cómo funciona un edificio. Gustavo Gili.

Concepción e ingeniería de plantas industriales.
• Darley G (2010). La fábrica como arquitectura. Reverté.
• de Cos M. (1995). Teoría general del proyecto. Vol. II: Ingeniería de proyectos. Síntesis.
• Helmus FP (2008). Process plant design. Wiley-VCH.
• Neufert (2013). Arte de proyectar en arquitectura. Gustavo Gili.
• Sinnott R, Towler G (2012). Diseño en ingeniería química. Reverté.

Materiales de construcción.
• Argüelles R, Arriaga F (1996). Estructuras de madera. Diseño y cálculo. Asociación de Investigación Técnica de las Industrias de la Madera y el Corcho (AITIM).
• Argüelles R, Argüelles R, Arriaga F. (2013). Estructuras de acero. Bellisco.
• Arredondo F (1990). Generalidades sobre materiales de construcción. Servicio de Publicaciones Revista Obras Públicas.
• Calavera J (2011). Proyecto y cálculo de estructuras de hormigón. Intemac.
• Delibes A (1994). Tecnologías y propiedades mecánicas del hormigón. Intemac.
• Metha PK, Monteiro PJM (2013). Concrete: microstructure, properties and materials. McGraw-Hill.
• Miravete A (1995). Los nuevos materiales en la construcción. Reverté.
• Neville AM (2012). Properties of concrete. Trans-Atlantic Publications.

Estructuras: concepción estructural.
• Allen E, Iano J (2011). "The Architect Studio Companion. Rules of thumb for preliminary design", Wiley.
• ArcelorMittal (2014). Manuales de diseño Steel Buildings in Europe. http://amsections.arcelormittal.com/es/documentacion/manuales-de-diseno-steel-buildings-in-europe.html.
• Argüelles R, Arriaga F (1996). Estructuras de madera. Diseño y cálculo. Asociación de Investigación Técnica de las Industrias de la Madera y el Corcho (AITIM).
• Argüelles R, Argüelles R, Arriaga F (2013). Estructuras de acero. Bellisco.
• Calavera J (2011). Proyecto y cálculo de estructuras de hormigón. Intemac.
• Charleson A (2007). La estructura como arquitectura. Reverté.
• Engel H (2013). Sistemas de estructuras. Gustavo Gili.
• García Valcarce A, Sacristán JA, González P, Hernández RJ, Pascual R, Sánchez-Ostiz A, Irigoyen D (2003). Manual de edificación. Mecánica de los terrenos y cimientos. CIE – Dossat 2000.
• González JL, Casals A, Falcones A (2001). Claves del construir arquitectónico. II y III. Elementos. Gustavo Gili.
• ITEA (2000). ESDEP: Programa Europeo de Formación en Cálculo y Diseño de la Construcción en Acero (CD-ROM). Instituto Técnico de la Estructura en Acero (ITEA).
• ITEA (2000). Guía de diseño para edificios con estructura de acero. Instituto Técnico de la Estructura de Acero (ITEA).
• Millais M (1997). Estructuras de edificación. Celeste Ediciones.
• Paricio I (2000). La construcción de la arquitectura. 2. Los elementos. Instituto de Tecnología de la Construcción de Cataluña (ITeC).

Cerramientos y particiones.
• González JL, Casals A, Falcones A (1997). Claves del construir arquitectónico. I. Principios. Gustavo Gili.
• González JL, Casals A, Falcones A (2001). Claves del construir arquitectónico. II y III. Elementos”, Gustavo Gili.
• Paricio I (2004). La construcción de la arquitectura. 1. Las técnicas. Instituto de Tecnología de la Construcción de Cataluña (ITeC).
• Paricio I (2000). La construcción de la arquitectura. 2. Los elementos. Instituto de Tecnología de la Construcción de Cataluña (ITeC).
• Paricio I (2000). La construcción de la arquitectura. 3. La composición. Instituto de Tecnología de la Construcción de Cataluña (ITeC).

Casos reales de arquitectura industrial.
• Alonso del Val MA et al. (2003). Arquitectura industrial. Munilla-Lería.
• Amery C (1995). Architecture, industry and innovation. Phaidon.
• Neufert (2013). Arte de proyectar en arquitectura. Gustavo Gili.
• Phillips A (1993). Arquitectura industrial. Gustavo Gili.
• Sommer D, Weisser L, Holletschek B (1995). Architecture for the work environment. Birkhäuser.

Instalaciones.
• Allen E, Iano J (2011). The Architect Studio Companion. Rules of thumb for preliminary design. Wiley.
• Arizmendi LJ (2005). Cálculo y normativa básica de las instalaciones en los edificios. I. Instalaciones hidráulicas, de ventilación y de suministros con gases combustibles. Eunsa.
• Arizmendi LJ (2003). Cálculo y normativa básica de las instalaciones en los edificios. II. Instalaciones energéticas y electrotécnicas. Eunsa.
• Arizmendi LJ (2004). Cálculo y normativa básica de las instalaciones en los edificios. III. Instalaciones eléctricas. Eunsa.
• Carrier (2009). Manual de aire acondicionado. Marcombo.
• De Isidro F, et al. (2012). Abecé de las instalaciones. Munilla-Lería.
• Fumadó JL (2004). Las instalaciones de servicios en los edificios. I. Agua. Ediciones CAT. Colegio Oficial de Arquitectos de Galicia.
• Fumadó JL (2007). Climatización de edificios. Ediciones del Serbal..
• Garcia Valcarce A et al. (1997). Evacuación de aguas de los edificios. Universidad de Navarra.
• González Sierra C (2013). Diseño y cálculo de instalaciones de climatización. Cano Pina.
• Neufert (2013). Arte de proyectar en arquitectura, Gustavo Gili, Barcelona.
• Torrescusa A (2013). Conocimientos básicos de instalaciones térmicas en edificios. Cano Pina.
• Vázquez J, Herranz JC (2012). Números gordos en el proyecto de instalaciones. Cinter.
• Wellpot E (2009). Las instalaciones en los edificios. Gustavo Gili.

Recomendaciones
Asignaturas que se recomienda haber cursado previamente
ANÁLISIS Y DISEÑO DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES/730G04069
RESISTENCIA DE MATERIALES/730G04013

Asignaturas que se recomienda cursar simultáneamente

Asignaturas que continúan el temario
Trabajo Fin de Grado/730G04068

Otros comentarios


(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías