Identifying Data 2017/18
Subject (*) COMPUTATIONAL HYDRODYNAMIC Code 730G01144
Study programme
Grao en Arquitectura Naval
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Fourth Obligatoria 6
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Enxeñaría Naval e Industrial
Coordinador
Fariñas Alvariño, Pablo
E-mail
pablo.farinas@udc.es
Lecturers
Fariñas Alvariño, Pablo
E-mail
pablo.farinas@udc.es
Web
General description Nesta materia abordanse os fundamento e aplicación das técnicas de cálculo numérico aplicadas a hidrodinámica naval. O curso basease no método dos volumes finitos e perséguese que o alumno acade un nivel de coñecemento que lle permita abordar de xeito autónomo a modelaxe numérica de problemas navais fundamentais.

Study programme competencies
Code Study programme competences
A1 Capacidade para a resolución dos problemas matemáticos que poidan formularse na enxeñaría. Aptitude para aplicar os coñecementos sobre: álxebra lineal; xeometría; xeometría diferencial; cálculo diferencial e integral; ecuacións diferenciais e en derivadas parciais; métodos numéricos; algorítmica numérica; estatística e optimización.
A19 Coñecemento da hidrodinámica naval aplicada.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B4 Traballar de forma autónoma con iniciativa.
B5 Traballar de forma colaboradora.
B8 Actitude orientada ao traballo persoal intenso.
B9 Capacidade de integrarse en grupo de traballo.
B10 Actitude orientada á análise.
B11 Actitude creativa.
B12 Capacidade para encontrar e manexar a información.
B13 Capacidade de comunicación oral e escrita.
B14 Manexo de sistemas asistidos por ordenador.
B15 Concepción espacial.
B16 Fixar obxectivos e tomar decisións.
B17 Analizar e descompoñer procesos.
B18 Capacidade de abstracción, comprensión e simplificación de problemas complexos.
B19 Motivar ao grupo de traballo.
B20 Capacidade de negociación.
B21 Abertos ao cambio.
B22 Vontade de mellora continua.
B23 Positivos fronte a problemas.
C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Learning outcomes Study programme competences
Knowing and understanding the numerical model based on the fundamental equations. Modelling and understanding the fundamental phenomenologies which govern the hydrodynamics. Analyzing the computational results, from a general perspective, in complex hydrodynamic cases. A1
A19
B1
B2
B3
B4
B5
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
C3
C6
C7
C8

Contents
Topic Sub-topic
Remembering conservation laws: Conservation laws (mass and momentum).
Partial differential equations (elliptic, parabolic and hyperbolic).
Discretization methods (FVM, FEM, FD).
Pure diffusion: Discretization for the one dimensional case.
Extension for 2D and 3D cases.
Implementing cases.
Combined diffusion and advection: Discretization approach and different interpolation schemes families
Classical interpolation schemes family.
Power law interpolation schemes family.
Normalized variable diagram interpolation schemes family.
Total variation diminishing interpolation schemes family.
Implementing cases.
Pressure velocity coupling algorithms: Introduction to the closure problem.
Numerical versus physical incompressibility.
Staggered grids.
SIMPLE/ER/C and PISO methods for staggered grids.
SIMPLE/ER/C and PISO methods for collocated grids.
Implementing cases.
Linear equations systems: Sparse matrix systems.
Point to point, line to line and plane to plane methods.
High and low frequency errors. Multigrid methods.
Conjugate gradient method.
Implementing cases
Unsteady problems: Explicit, implicit and fully implicit schemes in 1D transient pure diffusive case.
Extension to 3D case.
Combined advection diffusion transient case.
Transient pressure velocity coupling.
Implementing cases.
Special Boundaries: Remembering Dirichlet and von Newmann boundaries.
Combined boundary conditions.
Wall laws.
Special boundaries.
Free surface.
Cases over commercial software: Proposed cases by the professor.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Problem solving A1 A19 B1 B2 B3 B4 B5 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 C3 C6 C7 C8 0 145 145
Objective test A1 A19 B1 B2 B3 B4 B5 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 C3 C6 C7 C8 4 0 4
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Problem solving Autonomous homework on implementing cases.
Objective test Is the exam.

Personalized attention
Methodologies
Problem solving
Description
no personal attention

Assessment
Methodologies Competencies Description Qualification
Objective test A1 A19 B1 B2 B3 B4 B5 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 C3 C6 C7 C8 Is the exam. 100
 
Assessment comments
É unha materia en extinction, polo tanto o alumno so terá dereito a exame. Para superar esta materia é necesario acadar unha calificación no exame de, polo menos, 5.0 sobre 10.

Sources of information
Basic Hildebrand F.B. (1976). Advanced calculus for applications. Prentice hall
Pablo Fariñas (2013). Apuntes de clase.
Versteeg H.K. & Malalasekera W. (1995). Computational fluid dynamics, the finite volume method.. Longmann
Maliska C.R. (1995). Transferencia de calor e mecánica de fluidos computacional.. LTC editora

Complementary


Recommendations
Subjects that it is recommended to have taken before
CALCULUS/730G01101
PHYSICS I/730G01102
ENGINEERING DRAWING/730G01103
LINEAR ALGEBRA/730G01106
PHYSICS II/730G01107
INTRODUCTION TO COMPUTER SCIENCE AND PROGRAMMING/730G01109
DIFFERENTIAL EQUATIONS/730G01110
THERMODYNAMICS/730G01115
MECHANICS/730G01118
STATISTICS/730G01111
ELASTICITY AND STRENGTH OF MATERIALS/730G01117
FLUID MECHANICS/730G01119
SHIP´S HYDROSTATIC AND STABILITY/730G01122
NAVAL STRUCTURES 1/730G01125
NAVAL STRUCTURES 2/730G01126
MARINE HYDRODINAMIC/730G01127

Subjects that are recommended to be taken simultaneously
SHIP NOISE AND VIBRATIONS/730G01121
3D MODEL OF HULL AND SHIP STRUCTURE /730G01166

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.