Datos Identificativos 2018/19
Asignatura (*) ESTRUCTURAS II Código 730G03036
Titulación
Grao en Enxeñaría Mecánica
Descriptores Ciclo Periodo Curso Tipo Créditos
Grado 2º cuatrimestre
Cuarto Optativa 6
Idioma
Castellano
Modalidad docente Presencial
Prerrequisitos
Departamento Enxeñaría Naval e Industrial
Coordinador/a
Gutierrez Fernandez, Ruth Maria
Correo electrónico
ruth.gutierrez@udc.es
Profesorado
Gutierrez Fernandez, Ruth Maria
Correo electrónico
ruth.gutierrez@udc.es
Web http://https://sites.google.com/site/structuralanalysislab/home
Descripción general Nesta materia perséguese adquirir as competencias específicas para o deseño de sólidos e estruturas sometidas a esforzos de tracción, compresión, flexión e torsión, e a capacidade de analizar estados de tensión e de deformación en sólidos e estruturas.

Competencias del título
Código Competencias del título
A1 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.
A14 Conocimiento y utilización de los principios de la resistencia de materiales.
A23 Conocimientos y capacidades para aplicar los fundamentos de la elasticidad y resistencia de materiales al comportamiento de sólidos reales.
A24 Conocimientos y capacidad para el cálculo y diseño de estructuras y construcciones industriales.
B2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B6 Ser capaz de concebir, diseñar o poner en práctica y adoptar un proceso sustancial de investigación con rigor científico para resolver cualquier problema planteado, así como de que comuniquen sus conclusiones -y los conocimientos y razones últimas que la sustentan- públicos especializados y no especializados de una manera clara y sin ambigüedades.
B7 Ser capaz de realizar un análisis crítico, evaluación y síntesis de ideas nuevas y complejas.
B9 Adquirir una formación metodológica que garantice el desarrollo de proyectos de investigación (de carácter cuantitativo y/o cualitativo) con una finalidad estratégica y contribuyan a situarnos en la vanguardia del conocimiento.
C1 Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida.
C2 Desarrollarse para el ejercicio de una ciudadanía abierta, culta, crítica, comprometida, democrática y solidaria, capaz de analizar la realidad, diagnosticar problemas, formular e implantar soluciones basadas en el conocimiento y orientadas al bien común.
C3 Entender la importancia de la cultura emprendedora y conocer los medios al alcance de las personas emprendedoras.
C4 Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse.
C5 Asumir como profesional y ciudadano la importancia del aprendizaje a lo largo de la vida.
C6 Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad.

Resultados de aprendizaje
Resultados de aprendizaje Competencias del título
Manejar las leyes básicas del análisis computacional de sólidos elásticos y estructuras. A14
A23
A24
B3
B5
B6
B9
C1
C3
C5
Aplicar de forma adecuada los conceptos teóricos en el laboratorio. Modelar matemáticamente sistemas mecánicos y estructurales A1
A24
B2
B5
B6
C2
C4
C6
Usar un linguaje rigoroso en el campo de la ingeniería estructural para presentar e interpretar datos y resultados B2
B3
B5
B6
B7
B9
C1
C2
C3
C4
C5
C6
Resolver ejercicios y problemas de forma completa y razonada A1
A14
A23
A24
B2
B3
B6
B7
C1
C2
C3
C4
C5
C6

Contenidos
Tema Subtema
Tema 0. Los bloques o temas siguientes desarrollan los contenidos establecidos en la ficha de la Memoria de Verificación. Método de los elementos finitos; elementos estructurales; análisis numérico de estructuras mediante programas informáticos. Mecánica del suelo y cimentaciones.
Tema 1. Planteamiento del MEF para estática Planteamiento del problema estático. Principio de los trabajos virtuales. Discretización. Interpolación elemental. Matriz de rigidez y vector de cargas. Ensamblaje. Transformación de las direcciones de los grados de libertad locales a globales cuando difieren.
Tema 2. Planteamiento general del MEF Planteamiento del problema dinámico. Matriz de masas y de amortiguamiento. Imposición de condiciones de contorno. Imposición de restricciones: grados de libertad maestros y esclavos. Campo de desplazamientos, deformaciones y tensiones.
Tema 3. Aproximación del campo de desplazamientos Clasificación de los problemas elásticos. Matrices tensión-deformación. Funciones de aproximación de la familia de elementos finitos en coordenadas generalizadas. Elementos de Lagrange y Serendip. Interpolación de Lagrange. Criterios de convergencia del MEF. Test de la parcela.
Tema 4. Elementos isoparamétricos Introducción. Elementos isoparamétricos. Espacio geométrico, espacio natural. Funciones de aproximación en el espacio natural.
Tema 5. Elementos isoparamétricos para tensión y deformación plana Elasticidad en tensión y deformación plana. Elemento finito isoparamétrico para elasticidad plana. Jacobiano de la transformación isoparamétrica. Singularidades. Errores de discretización. Matrices de masa y rigidez.
Tema 6. Aspectos computacionales Integración numérica. Método de Newton-Côtes. Cuadratura de Gauss. Integración bidimensional y tridimensional. Integración completa, integración reducida, integración selectiva. Selección del tipo y orden de integración. Establecimiento de la matriz de rigidez para elemento isoparamétrico bidimensional. Cargas de volumen y superficie. Cargas térmicas. Criterios de convergencia para elementos isoparamétricos.
Tema 7. Elementos estructurales viga Introducción. Viga de Euler-Bernouilli, viga de Timoshenko. Ecuaciones de equilibrio de vigas. Formulación de elementos finitos: elemento hermítico. Elemento viga con movimiento plano. Elemento viga espacial.
Tema 8. Elementos estructurales placa y lámina Teoría de placas. Placa de Kirchhoff. Placa de Reissner-Mindlin. Ecuaciones de Equilibrio de placas. Formulación de elementos finitos. Teoría de láminas. El elemento lámina plano.

Planificación
Metodologías / pruebas Competéncias Horas presenciales Horas no presenciales / trabajo autónomo Horas totales
Prácticas de laboratorio A1 A14 A23 A24 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 10 20 30
Trabajos tutelados A1 A14 A23 A24 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 14 38.5 52.5
Sesión magistral A14 A23 A24 B5 B9 C1 C2 C3 C4 C5 C6 10 30 40
Seminario A1 A14 A23 A24 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 8 16 24
 
Atención personalizada 3.5 0 3.5
 
(*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos

Metodologías
Metodologías Descripción
Prácticas de laboratorio Metodología que permite la realización de actividades de carácter práctico con computador, tales como modelización, análisis y simulación de elementos mecánicos e estruturales.
Trabajos tutelados Metodología diseñada para promover el aprendizaje autónomo de los estudiantes, resolviendo un problema que involucre os contenidos de la materia e involucre las competencias especificas de la misma, realizado bajo la tutela del profesor.

Alternativamente se propone un trabajo tutelado en el ámbito del aprendizaje-servicio, que combina el servicio a la comunidad con el aprendizaje en un sólo proyecto, en el que el alumnnado se forma trabajando en necesidades reales de su entorno con el fin de mejorarlo.
Sesión magistral Exposición oral complementada con el uso de medios audiovisuales, que tiene como finalidad transmitir conocimientos y facilitar el aprendizaje en al ámbito del análisis resistente y deformacional de sistemas mecánicos y estructuras.
Seminario Técnica de trabajo en grupo para resolver problemas, mediante exposición, discusión, participación y cálculo. Se emplea calculadora.

Atención personalizada
Metodologías
Seminario
Prácticas de laboratorio
Trabajos tutelados
Descripción
Seguimiento y orientación acerca de la solución de problemas concretos surgidos en el desarrollo de las distintas actividades planteadas en la asignatura.
Asistencia en la realización de los trabajos tutelados.


Evaluación
Metodologías Competéncias Descripción Calificación
Prácticas de laboratorio A1 A14 A23 A24 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 Hay que asistir sistemáticamente a las prácticas y elaborarlas durante las sesiones prácticas de la materia y en las horas no presenciales asignadas. El seguimiento del trabajo realizado se realiza en estas sesiones prácticas.
La evaluación se realiza mediante la presentación de los informes de dichas prácticas.
30
Trabajos tutelados A1 A14 A23 A24 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 El trabajo involucra los contenidos teóricos y prácticos desarrollados en la asignatura. Se debe realizar individualmente en las sesiones de prácticas a lo largo del curso y en casa, en las horas no presenciales asignadas a este proyecto. Se va a realizar un seguimiento de la realización del trabajo en las sesiones de prácticas.
La evaluación se realiza mediante la presentación del trabajo tutelado.

70
 
Observaciones evaluación

El
estudiante, cuya presencia a lo largo del cuatrimestre sea insuficiente para
realizar el seguimiento de su trabajo, por dispensa académica o por
otras causas, tendrá igualmente que elaborar y
presentar las prácticas y el trabajo tutelado para su valoración. El
seguimiento de dicho trabajo se efectuará en las sesiones de tutoría. En este
caso, el proceso de evaluación de la materia puede incluir además de la
presentación de las prácticas y del trabajo tutelado, una sesión práctica
individual o en grupo, en la que el estudiante resuelve manualmente y/o con el
ordenador los problemas planteados por la profesora.

Para la
segunda oportunidad se puede presentar el trabajo pendiente y mejorar el ya
realizado. El seguimiento se realiza en sesiones de tutoría. La evaluación se
realiza mediante la presentación de las prácticas y de los trabajos tutelados
pendientes y/o mejorados. El proceso de evaluación de la materia puede incluir, además de
la presentación de las prácticas y del trabajo tutelado, una sesión práctica
individual o en grupo, en la que el estudiante resuelve manualmente y/o con el
ordenador los problemas planteados por la profesora.


Fuentes de información
Básica R. Gutiérrez, E. Bayo, A. Loureiro, LE Romera (2010). Estructuras II. Reprografía del Noroeste. Santiago de Compostela
Dassault Systèmes Simulia Corp. (2011). Abaqus Analysis User’s Manual. © Dassault Systèmes. Providence, RI, USA.
Eugenio Oñate (1995). Calculo de estructuras por el método de elementos finitos. CIMNE, Barcelona, España
Bathe K.J. (2006). Finite Elements Procedures.. Prentice-Hall, Pearson Education, Inc. USA

Complementária


Recomendaciones
Asignaturas que se recomienda haber cursado previamente
RESISTENCIA DE MATERIALES/730G03013
ESTRUCTURAS/730G03021
RESISTENCIA MATERIALES II/730G03027

Asignaturas que se recomienda cursar simultáneamente

Asignaturas que continúan el temario

Otros comentarios

Para ayudar a conseguir un entorno inmediato sostenido y cumplir con el objetivo de la acción número 5: “Docencia e investigación saludable y sustentable ambiental y social” del "Plan de Acción Green Campus Ferrol":

            La entrega de los trabajos documentales que se realicen en esta materia:

              •  Se solicitarán en formato virtual y/o soporte informático

             •  Se realizará a través de Moodle, en formato digital sin necesidad de imprimirlos

             •  En caso de ser necesario realizarlos en papel:

                  -     No se emplearán plásticos

                 -      Se realizarán impresiones a doble cara.

                 -      Se empleará papel reciclado.

                 -      Se evitará la impresión de borradores.

Se debe de hacer un uso sostenible de los recursos y la prevención de impactos negativos sobre el medio natural



(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías