Coñecer as formas de reproducir nas computadoras as estructuras e funcionamento dos circuitos do cerebro. Para a investigación do sistema nervioso e para diseñar sistemas intelixentes baseados no funcionamento cerebral.
Competencias do título
Código
Competencias / Resultados do título
A4
Explicar o funcionamento das neuronas dende o nivel molecular ao celular.
A5
Describir a relación entre as canles iónicas e o comportamento neuronal.
B4
Saiban ler e obter información relevante de publicacións científicas.
B5
Saiban aplicar os coñecementos adquiridos e a súa capacidade de resolución de problemas en ámbitos novos ou pouco coñecidos dentro de contextos máis amplos (ou multidisciplinares) relacionados coa neurociencia.
B7
Teñan competencia na presentación oral e escrita de resultados científicos a públicos especializados e non especializados dun modo claro e sen ambigüidades.
B8
Saiban traballar en grupos de carácter multidisciplinar
B9
Posúan capacidade de reflexión sobre as responsabilidades éticas e sociais da aplicación da investigación.
C3
Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C4
Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C6
Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7
Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8
Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.
Resultados de aprendizaxe
Resultados de aprendizaxe
Competencias / Resultados do título
- Capacidade de abstracción e formalización do fenómeno ou sistema real a modelizar.
AI5
BI4 BI5 BI8
CI3 CI6 CI7 CI8
- Ser capaz de relacionarse e traballar en equipo con científicos de diferentes ámbitos.
BI8 BI9
CI4 CI6 CI8
- Capacidade para comprender e expoñer os resultados das modelizacións e establecer relacións co coñecemento existente ata o momento do sistema biolóxico.
AI4 AI5
BI4 BI7
CI6
Contidos
Temas
Subtemas
1. Introducción á neurociencia computacional
2. Modelos a nivel molecular
3. Modelos a nivel de membrana: desde Boltzmann ata Hodgkin-Huxley
4. Modelos a nivel de neurona: teoria do cable e modelo
compartimental de Rall
5. Modelos a nivel de sinapsis
6. Modelos de microcircuitos
7. Modelos de macrocircuitos
8. Codificación en receptores sensoriais
9. Tipos de actividade neuronal
10. Transmisión de información no cerebro
11. Codificación espacial e temporal
12. Codificación por poboacións de neuronas
Espoñerase e comentaranse cos alumnos as diapositivas relacionadas con cada tema.
PROGRAMA DE CLASES PRÁCTICAS
Comprender cómo se fai unha modelización.
Prácticas con neurosimuladores.
Informe sobre a Aplicación do proceso de modelización
Exposición tras análisis e crítica.
Planificación
Metodoloxías / probas
Competencias / Resultados
Horas lectivas (presenciais e virtuais)
Horas traballo autónomo
Horas totais
Sesión maxistral
A4 A5 B4 C3 C8
20
25
45
Seminario
B5 B7 B8 B9 C4 C6 C7
9
18
27
Atención personalizada
3
0
3
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado
Metodoloxías
Metodoloxías
Descrición
Sesión maxistral
Realizarase a clase maxistral co empleo de materiais docentes multimedia, aproveitando as vantaxes das novas tecnoloxías e fomentando a participación do alumnado en cada tema. Esta actividade estará apoiada polo resto das metodoloxías.
Seminario
Consiste na representación dun fenómeno de natureza electrofisiolóxica, que permite unha análise máis sinxela, que si se levara a cabo sobre o orixinal ou na realidade. Ponse ao suxeito ante unhas condicións hipotéticas nas cales se proba o seu comportamento ante situacións concretas. Baséase, por tanto, na configuración de situacións similares ás que se producen nun contexto real, coa finalidade de utilizalas como experiencias de aprendizaxe.
Atención personalizada
Metodoloxías
Seminario
Descrición
Resolución das dúbidas que surxan tanto nas clases maxistrais como na realización dos traballos. Atenderanse ós alumnos mediante tutorías presenciais, así como mediante tutorías virtuais a través do correo electrónico.
Avaliación
Metodoloxías
Competencias / Resultados
Descrición
Cualificación
Sesión maxistral
A4 A5 B4 C3 C8
A asistencia e participación nas clases de prácticas e clases expositivas suporá o 40% da nota final.
40
Seminario
B5 B7 B8 B9 C4 C6 C7
A calidade dos traballos así como a súa axeitada exposición supoá o 60% da nota final.
60
Observacións avaliación
Casos excepcionais: no caso de que o estudante, por razóns
debidamente xustificadas, non puidera realizar todas as probas de
avaliación continua, o alumno contactará coa profesora para establecer datas de defensa dos traballos.
Bower
J. M. y Koch C. “Experimentalists
and modelers: can we all just get along?”. Trends in Neuroscience. 15(11):
458-461.1992.
Bower, J.M., and Beeman: “The Book of GENESIS:
Exploring Realistic Neural Models with the GEneral NEural SImulation
System”. Second edition. New York: Springer-Verlag. 1998
COUCH, L.W. Sistemas de comunicación digitales y
analógicos. Prentice Hall, 1998.
DIMITRIEV, V.I. Teoría de información aplicada. Ed. MIR, Moscú, 1991.
DRURY,
G., MARKARIAN, G y PICKAVANCE, K. Coding and modulation for digital
television. Kluwer, 2001.
Hines, M.: “NEURON—A program for simulation of
nerve equations”. In: Neural Systems: Analysis and Modeling, edited by F.
Eeckman. Norwell, MA: Kluwer, p. 127-136. 1993.
Hines, M.: “The NEURON simulation program”. In:
Neural Network Simulation Environments, edited by J. Skrzypek. Norwell,
MA: Kluwer, p. 147-163. 1994.
Koch, C. Biophysics of Computation: Information Processing in Single
Neurons. Oxford University Press, 1999.
LeRay, D., Fernández, D., Porto, A. & Buño, W.
“Metaplastic regulation of synaptic efficacy between convergent Schaffer
collaterals in rat hippocampal CA1 neurons.” Soc. Neurosci. Abstr., Vol.
29. 2003.
LeRay, D., Fernández, D., Porto, A., Fuenzalida, M.
& Buño, W. “Heterosynaptic Metaplastic Regulation of Synaptic Efficacy
in CA1 Pyramidal Neurons of Rat Hippocampus”. Hippocampus. 2004.
MacKay, DJC. Information Theory, Inference, and
Learning Algorithms. Cambridge University Press, 2003.
PROAKIS,
J.G. Digital communications, McGraw Hill, 1995
Sah
P., Bekkers J.M.: “Apical dendritic location of slow
afterhyperpolarization current in hippocampal pyramidal neurons:
implications for the integration of long-term potentiation”. J.
Neuroscience. 16:4537-4542. 1996.
F Rieke, D Warland, R de Ruyter van Steveninck
& W Bialek.
Spikes: Exploring the Neural Code. MIT Press, Cambridge, 1997.
Schwartz,
Eric L. “Computational Neuroscience”. MIT Press. 1990.
Storm
J. F.: “Potassium currents in hippocampal pyramidal cells”. Prog.
Brain Res. 83, 161-187. 1990.
STREMLER, F.G. Introducción a los sistemas de
comunicación. Addison-Wesley, 1993.
Wessel R., Kristan Jr. W.B., Kleinfeld D.:
“Dendritic Ca2+-acticvated K+ conductances regulate electrical signal
propagation in an invertebrate neuron”. J. Neuroscience. 19:8319-8326.
1999.
WILSON,
S.G. Digital modulation and coding, Prentice Hall, 1996.
Bibliografía complementaria
Recomendacións
Materias que se recomenda ter cursado previamente
Materias que se recomenda cursar simultaneamente
Sistemas Adaptativos Complexos/610411231
Bioinformática Aplicada á Neurociencia/610411204
Materias que continúan o temario
Fisioloxía do Sistema Nervioso/610411105
Observacións
(*)A Guía docente é o documento onde se visualiza a proposta académica
da UDC. Este documento é público e non se pode modificar, salvo casos excepcionais baixo a revisión do
órgano competente dacordo coa normativa vixente que establece o proceso de elaboración de guías