Datos Identificativos 2019/20
Asignatura (*) ECUACIÓNS DIFERENCIAIS Código 730G03011
Titulación
Grao en Enxeñaría Mecánica
Descriptores Ciclo Período Curso Tipo Créditos
Grao 1º cuadrimestre
Segundo Formación básica 6
Idioma
Castelán
Galego
Modalidade docente Presencial
Prerrequisitos
Departamento Matemáticas
Coordinación
Anton Nacimiento, Jose Augusto
Correo electrónico
jose.augusto.anton@udc.es
Profesorado
Anton Nacimiento, Jose Augusto
Deibe Díaz, Álvaro
Correo electrónico
jose.augusto.anton@udc.es
alvaro.deibe@udc.es
Web
Descrición xeral Esta materia pretende presentar de forma rigorosa todos os métodos clásicos para resolver ecuacións diferenciais, tanto ordinarias como en derivadas parciais. Tamén se presentarán as situacións físicas que conducen á formulación das devanditas ecuacións.

Competencias do título
Código Competencias / Resultados do título

Resultados de aprendizaxe
Resultados de aprendizaxe Competencias / Resultados do título
Resolve problemas matemáticos que poden aplicarse na enxenería. A1
B1
B2
B5
B6
B7
C1
C4
C5
Aptitude para os coñocementos de ecuacións diferenciais. A1
B1
B2
B5
B6
B7
C1
C4
C5

Contidos
Temas Subtemas
Os bloques e temas seguintes desenvolven os contidos establecidos na Memoria de verificación. Ecuacións e sistemas de ecuacións diferenciais ordinarias. Ecuacións en derivadas parciais.
Introdución as ecuacións diferenciais Clasificación dunha ecuación diferencial. Tipos de solucións: solución xeral e solución particular. Ecuación diferencial dun feixe de curvas planas. Consideracións xeométricas: curvas isoclinas e curvas integrais. Solucións singulares.
Ecuacións diferenciais ordinarias de primeira orde Teorema de existencia e unicidad da solución. Ecuacións de variables separadas. Ecuacións reducibles a unha de variables separadas. Ecuacións homoxéneas. Ecuacións reducibles a homoxéneas. Ecuacións diferenciais exactas. Factores integrantes. Ecuacións lineais. Ecuación de Bernoulli. Ecuacións de primeira orde non lineais na derivada. Ecuación de Lagrange. Ecuación de Clairaut. Interpretación xeométrica das solucións singulares: envolvente dun feixe de curvas. Traxectorias dun feixe de curvas planas.
Ecuacións diferenciais de orde superior Tipos de ecuacións cuxo orde pode rebaixarse. Ecuacións homoxéneas.

Ecuacións diferenciais lineais. Ecuación homoxénea e non homoxénea. Métodos para integrar as ecuacións diferenciais lineais completas: variación das constantes.

Ecuacións diferenciais lineais con coeficientes constantes. Solución xeral da ecuación completa mediante coficientes indeterminados. Ecuacións diferenciais lineais con coeficientes variables: ecuación de Euler.
Transformada de Laplace Transformada de Laplace. Algunhas transformadas inmediatas. Funcións definidas a trozos e funcións periódicas. Transformada Inversa. Aplicación as ecuacións diferenciais. Convolución de funcións e produto de transformadas.
Ecuacións definidas por series Solucións por Series de Potencias para ecuacións de primeira orde.
Solucións analíticas de ecuacións diferenciais lineais. Ecuación de Legendre. Ecuación de Hermite. Puntos singulares. Solución ó redor dun punto singular. Ecuación de Bessel. Propiedades das funcións de Bessel. Funcións modificadas de Bessel.
Sistemas de ecuacións diferenciais Métodos de Integración dos sistemas de ecuacións diferenciais. Métodos baseados no uso do operador D. Métodos baseados no uso da Transformada de Laplace.

Sistemas de ecuacións diferenciais lineais. Método de variación das constantes. Métodos de redución de sistemas de orde superior. Sistemas de ecuacións diferenciais lineais homoxéneos con coeficientes constantes.
Introdución as ecuacións en derivadas parciais Definición. Ecuacións en derivadas parciais lineais e case-lineais. Ecuación funcional. Ecuacións en derivadas parciais de primeira orde.

Planificación
Metodoloxías / probas Competencias / Resultados Horas lectivas (presenciais e virtuais) Horas traballo autónomo Horas totais
Sesión maxistral A1 B1 B5 C4 C5 30 42 72
Solución de problemas A1 B2 C1 C4 20 30 50
Traballos tutelados A1 B7 B6 C1 10 15 25
Proba mixta A1 B2 C4 0 2 2
 
Atención personalizada 1 0 1
 
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado

Metodoloxías
Metodoloxías Descrición
Sesión maxistral Desenvolvemento dos contidos máis teóricos da materia así como dos principais métodos prácticos de resolución de ecuacións. Utilizaranse medios audiovisuais e fomentarase a participación do alumno.
Solución de problemas Aplicación dos diferentes métodos de resolución das ecuacións diferenciais a casos prácticos. Realizaranse problemas na lousa e outros os realizarán os propios alumnos en clase mentres o profesor atende as dúbidas que poidan xurdir.
Traballos tutelados Probas que se realizarán en clase despois de verificar o traballo de alumno nun conxunto de problemas. Os traballos poden ser tutelados.
Proba mixta Proba que recolle preguntas tipo de probas de ensaio (como a resolución de problemas) e preguntas tipo de probas obxetivas.

Atención personalizada
Metodoloxías
Solución de problemas
Traballos tutelados
Descrición
Atender as necesidades e consultas do alumno relacionadas ca materia e o estudio.

Avaliación
Metodoloxías Competencias / Resultados Descrición Cualificación
Solución de problemas A1 B2 C1 C4 Consistirá en resolver unha situación problemática concreta, a partir dos coñecementos que se traballaron, que pode ter máis dunha posible solución. 10
Traballos tutelados A1 B7 B6 C1 Probas obxectivas que se realizarán durante o curso despois de verificar os traballos realizados polos alumnos. 20
Proba mixta A1 B2 C4 Consistirá nun exame escrito de cinco ou mais problemas de aplicación. 70
 
Observacións avaliación

Os criterios de avaliación da segunda oportunidade son os mesmos cos da primeira oportunidade.  A solución de problemas e os traballos tutelados forman parte da avaliación continua. 

O alumnado con recoñecemento de dedicación a tempo parcial e dispensa académica de exención de asistencia poderá optar o 100% da nota mediante a realización das probas obxectivas que se concreten durante o curso.


Fontes de información
Bibliografía básica Granero, F. (). Calculo integral. Addison Wesley
Simmons (). Ecuaciones diferenciales. Mc Graw Hill
Nagle (). Ecuaciones diferenciales. Addison Wesley
Spiegel (). Ecuaciones diferenciales aplicadas. Prentice Hall
López Rodríguez (). Problemas resueltos de ec. diferenciales. Thomson

Bibliografía complementaria Giordano/ Weir (). Differential Equations. Addison Wesley
Ledder (). Ecuaciones diferenciales. Mc Graw Hill
Ward Brown (). Variable compleja. Mc Graw Hill


Recomendacións
Materias que se recomenda ter cursado previamente
CÁLCULO/730G03001
ÁLXEBRA/730G03006

Materias que se recomenda cursar simultaneamente

Materias que continúan o temario

Observacións

Para axudar a conseguir un entorno sostido e cumprir co obxectivo da acción número 5 (“Docencia e investigación saudable e sustentable ambiental e social” do "Plan de Acción Green Campus Ferrol"), a entrega dos traballos documentais que se realicen nesta materia:

•  Solicitaranse en formato virtual e/ou soporte informático.

•  Realizarase a través de Moodle, en formato dixital sen necesidade de imprimilos.

•  En caso de ser necesario realizalos en papel:

   - Non se empregarán plásticos.

   - Realizaranse impresións a dobre cara.

   - Empregarase papel reciclado.

   - Evitarase a impresión de borradores.

•  Débese de facer un uso sustentable dos recursos e a prevención de impactos negativos sobre o medio natural.



(*)A Guía docente é o documento onde se visualiza a proposta académica da UDC. Este documento é público e non se pode modificar, salvo casos excepcionais baixo a revisión do órgano competente dacordo coa normativa vixente que establece o proceso de elaboración de guías