Study programme competencies |
Code
|
Study programme competences / results
|
A2 |
Identificar organismos. |
A6 |
Catalogar, avaliar e xestionar recursos naturais. |
A20 |
Muestrear, caracterizar e manexar poboacións e comunidades. |
A21 |
Deseñar modelos de procesos biolóxicos. |
A22 |
Describir, analizar, avaliar e planificar o medio físico. |
A23 |
Avaliar o impacto ambiental. Diagnosticar e solucionar problemas ambientais. |
A24 |
Xestionar, conservar e restaurar poboacións e ecosistemas. |
A25 |
Desenvolver e aplicar técnicas de biocontrol. |
A26 |
Deseñar experimentos, obter información e interpretar os resultados. |
A27 |
Dirixir, redactar e executar proxectos en Bioloxía. |
A30 |
Manexar adecuadamente instrumentación científica. |
A31 |
Desenvolverse con seguridade nun laboratorio. |
A32 |
Desenvolverse con seguridade no traballo de campo. |
B1 |
Aprender a aprender. |
B2 |
Resolver problemas de forma efectiva. |
B3 |
Aplicar un pensamento crítico, lóxico e creativo. |
B6 |
Organizar e planificar o traballo. |
B7 |
Comunicarse de maneira efectiva nunha contorna de traballo. |
B8 |
Sintetizar a información. |
B9 |
Formarse unha opinión propia. |
B10 |
Exercer a crítica científica. |
B11 |
Debater en público. |
B12 |
Adaptarse a novas situacións. |
C1 |
Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma. |
C2 |
Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro. |
C3 |
Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida. |
C4 |
Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común. |
C5 |
Entender a importancia da cultura emprendedora e coñecer os medios ao alcance das persoas emprendedoras. |
C6 |
Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse. |
C7 |
Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida. |
C8 |
Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade. |
Learning aims |
Learning outcomes |
Study programme competences / results |
Assessment of environmental impact taken into account soil diversity. Evaluation of soil contamination and techniques for soil restoration.
|
A6 A20 A22 A23 A24
|
B1 B9 B10
|
C1 C5 C6
|
The scientific study of the soil is important for Biologists, mainly from an ecological perspective. Soil is essential in environmental studies and soil science contributes to understand important processes such as biogeochemical cycles, the structure ecosystems and factors from which primary production depends. |
A2 A6 A22 A23 A25 A30 A31 A32
|
B10
|
C5 C7 C8
|
The course of Soil Science is designed to provide an overview of the fundamental: Physical processes, Chemical processes, Fertility, Biology, and Land Use. Both theoretical and practical contents in Soil Science should contribute to enhance the skills of Biology students at the UDC in the use of several instrumental techniques. |
A2 A6 A25 A27
|
B2 B7 B12
|
C1 C5 C6 C7 C8
|
Soils act as substrates for vegetal communities and also as adsorbent and absorbent for nutritive, and allow life of many animal and vegetal organisms. Therefore our program pays particular attention to the “edaphosphere” as a complex dynamic and organised site, located in the interface between biosphere, lithosphere, hydrosphere and atmosphere. Soil is also the support of man-made spaces or sites influenced by man activity, such as urban-industrial areas and transport infrastructures. |
A6 A20 A26 A27
|
B2 B6 B9
|
C2 C4 C6 C7
|
Because of the role of the soil for terrestrial ecosystems, Edaphology has a particular interest in Environmental Biology. The soil food chain describes a complex living system and how it interacts with the environment, plants, and animals. The nature of soil makes direct observation of food webs difficult. Soil microbial communities are characterized in many different ways. The activity of microbes can be measured by their respiration and carbon dioxide release. The cellular components of microbes can be extracted from soil and genetically profiled, or microbial biomass can be calculated by weighing the soil before and after fumigation. |
A21 A30 A31 A32
|
B3 B8 B11
|
C3 C6 C7
|
Contents |
Topic |
Sub-topic |
I PRELIMINARY CONCEPTS
Lesson 1.- History of Soil Science.
Lesson 2.- Soil descripton in field conditions. Laboratory techniques for soil studies. |
Origin and development of Soils Science. Main topics in Soil Science.
Profile and horizons. Physical, Chemical and Bioñogical methods of soil analysis.
|
II SOIL COMPOSITION
Lesson 3.- Soil mineral composition. Soil clays.
Lesson 4.- Soil organic matter. |
Soil texture. Specific surface. Soil mineralogy. Soil clays. Structure and properties of most common soil clays. Oxyhydroxides.
Soil organic compounds. Humus. Organo-mineral associations. Organic matter and ecosystems: biogeochemical cycles.
|
III SOIL PROPERTIES
Lesson 5.- Soil physical properties and soil structure.
Lesson 6.- Soil water retention and water dynamics.
Lesson 7.- Soil temperature and aeration.
Lesson 8.- Soil pH and cation exchange capacity.
Lesson 9.- Soil biology.
Lesson 10. Soil fertility |
Bulk density and solid density. Soil porosity. Pore-size distribution. Aggregate dynamics in soils. Structural stability.
Soil moisture content and soil potential. Soil water measurement. Soil moisture characteristic curve. Soil water retention and soil water dynamics. Soil water and water requirements of vegetation.
Soil thermal properties. Soil temperature management. Composition of the soil atmosphere. Soil and gases of greenhouse effect.
Soil pH and soil acidity. Soil acidity effects. Acidity amendment. Exchange complex of soils. Cation exchange capacity.
Soil organisms. Soil enzymatic activity. Nucleic acids in soil. Soil organism and soil properties as indicators of soil quality.
Macronutrients and micronutrients. Nitrogen , phosphorus and potassium cycles. Calcium and magnesium. Iron, cupper, zinc, boron
and molybdenum. Other oligoelements |
IV FACTORS AND PROCESSES OF SOIL FORMATION
Lesson 11.- Factors of soil formation.
Lesson 12.- Processes of soil formation. |
Parent material. Climate. Topography. Times Vegetations and organisms. Anthropogenic factors.
Soil profile differentiation. Clay accumulation. Podzolization. Salinization. Calcification. Hydromorphic processes. Ferralitic alteration.
|
V SOIL SYSTEMATICS AND CLASSIFICATION
Lesson 13.- Soil Systematics.
Lesson 14.- Introduction to Soil Taxonomy.
Lesson 15.- World Reference Base for Soil Resources.
Lesson 16.- Spanish and Galician Soils. |
Genesic and diagnostic horizons. Soil profile. Horizon nomenclature.
Modern Soil Classifications. Soil Taxonomy. World Reference Base for
Soil Resources.
Characteristics for soil diagnosis. Moisture and temperature regimes. Oreders, suborders, great groups, subgroups, families, and series.
Organic soil. Soil with anthropic influences. Soils conditioned by topography and by time. Soils conditioned by cold, temperate, steppe, arid or semiarid and tropical or subtropical climates.
Soil under Atlantic climate. Soils under Mediterranean climate. Galician soils: parent material, climate, topography and vegetation effects.
|
VI APPLIED SOIL SCIENCE
Lesson 17.- Applications of Soil Science. |
Soil cartography.
Interactions soil-landscape.
Soil functions and society.
Soil and environment.
Soil contamination.
Recovery of contaminated soils.
Soil Use and Management.
|
PRACTICAL ACTIVITIES
Laboratory work
Field studies
|
Textural analysis
Bulk density and solid density, Porosity.
Aggregate stability
Soil pH.
Organic carbon and nitrogen
Cation exchange capacity
Soil extractable phosphorus
Biological activity and dehydrogenase activity
Case studies: Umbrisols, Cambisols, Fluvisols, and Gleysols
|
SUPERVISED PROJECTS |
Soil erotion as a source of diffuse pollution
Mechanisms and processes of water erosion under an Atlantic climate
Effect of forest fires in soil degradation
Mining and soil contamination
Livestock farming and soil contamination
Landfills and soil contamination
Organic pollutants
Physical-chemical indicators of soil quality
Biological indicators of soil quality
Vineyard soil in Galicia
Excessive soil fertilisation with slurry
Soil compactation risks
Hydric balance in soils
Heavy metals in soils |
Planning |
Methodologies / tests |
Competencies / Results |
Teaching hours (in-person & virtual) |
Student’s personal work hours |
Total hours |
Guest lecture / keynote speech |
A6 A21 A22 A23 A24 A27 A30 B1 C1 C2 C3 |
22 |
40 |
62 |
Supervised projects |
B2 B7 B8 B9 B10 B11 B12 C7 C6 |
7 |
16 |
23 |
Field trip |
A24 A32 C4 C5 C6 C7 |
5 |
10 |
15 |
Laboratory practice |
A2 A20 A22 A23 A25 A26 A27 A30 A31 A32 B3 B6 B8 B9 B10 C7 C8 |
12 |
28 |
40 |
|
Personalized attention |
|
10 |
0 |
10 |
|
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students. |
Methodologies |
Methodologies |
Description |
Guest lecture / keynote speech |
The contents of soil science will be developed.
The used audiovisual materials will be provided to students.
|
Supervised projects |
These are guided and supervised academic activities |
Field trip |
The main soil types in Galicia will be observed. |
Laboratory practice |
Asessement of main physical, chemical and biological properties of soils |
Personalized attention |
Methodologies
|
Field trip |
Supervised projects |
Laboratory practice |
|
Description |
Personalized attention will be provided by individual meetings in dates previously selected. |
|
Assessment |
Methodologies
|
Competencies / Results |
Description
|
Qualification
|
Guest lecture / keynote speech |
A6 A21 A22 A23 A24 A27 A30 B1 C1 C2 C3 |
Short questions and tests about the keynote speech. Final examination and also partial examinations, if requested. |
50 |
Field trip |
A24 A32 C4 C5 C6 C7 |
Assessment of field activities and reports of filed work. |
5 |
Supervised projects |
B2 B7 B8 B9 B10 B11 B12 C7 C6 |
Quality of the reports and presentations. |
30 |
Laboratory practice |
A2 A20 A22 A23 A25 A26 A27 A30 A31 A32 B3 B6 B8 B9 B10 C7 C8 |
Continuous assessment and practical work. |
15 |
|
Assessment comments |
Soil Science global grade can be assessed by continuous evaluation following the Bologna criteria.
Evaluations may be performed not only in English, but also in Galician or Spanish, if requested by the students.
|
Sources of information |
Basic
|
|
LAL, R. 2002. Encyclopedia of Soil Science. Marcel Dekker. PORTACASANELLAS, J. LÓPEZ AVEVEDO, M y ROQUERO, C. 2003. Edafología para la agricultura y el medio ambiente. Ediciones Mundi-Prensa.960 pp. PORTACASANELLAS, J. LÓPEZ AVEVEDO, M y POCH, R.M. 2008. Introducción a la Edafologia: uso y protección del suelo. Ediciones Mundi-Prensa. 451 pp. WRB. 2006. World Referente Base for Soil Resources. Wageningen/Roma. |
Complementary
|
|
Recursos web: www.iuss.org www.edafologia.ugr.es www.soilerosion.net Mapas de suelos de las cuatro provincias de Galicia y diversas provincias de España |
Recommendations |
Subjects that it is recommended to have taken before |
Geology/610G02004 | Physical Geography/610G02006 |
|
Subjects that are recommended to be taken simultaneously |
|
Subjects that continue the syllabus |
|
|