Competencias do título |
Código
|
Competencias / Resultados do título
|
A1 |
FB1 - Capacidade para a resolución dos problemas matemáticos que poidan formularse na enxeñaría. Aptitude para aplicar os coñecementos sobre: álxebra lineal; xeometría; xeometría diferencial; cálculo diferencial e integral; ecuacións diferenciais e en derivadas parciais; métodos numéricos; algorítmica numérica; estatística e optimización. |
B1 |
CB01 - Que os estudantes demostren posuír e comprender coñecementos nunha área de estudo que parte da base da educación secundaria xeral e adoita encontrarse a un nivel que, aínda que se apoia en libros de texto avanzados, inclúe tamén algúns aspectos que implican coñecementos procedentes da vangarda do seu campo de estudo |
B2 |
CB02 - Que os estudantes saiban aplicar os seus coñecementos ao seu traballo ou vocación dunha forma profesional e posúan as competencias que adoitan demostrarse por medio da elaboración e defensa de argumentos e a resolución de problemas dentro da súa área de estudo |
B3 |
CB03 - Que os estudantes teñan a capacidade de reunir e interpretar datos relevantes (normalmente dentro da súa área de estudo) para emitiren xuízos que inclúan unha reflexión sobre temas relevantes de índole social, científica ou ética |
B5 |
CB05 - Que os estudantes desenvolvan aquelas habilidades de aprendizaxe necesarias para emprenderen estudos posteriores cun alto grao de autonomía |
B7 |
B5 - Ser capaz de realizar unha análise crítica, avaliación e síntese de ideas novas e complexas |
C1 |
C3 - Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida. |
C4 |
C6 - Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse. |
C5 |
C7 - Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida. |
Resultados de aprendizaxe |
Resultados de aprendizaxe |
Competencias / Resultados do título |
Ser capaz de resolver problemas matemáticos que poidan aplicarse na enxeñería. Ter aptitude para os coñecementos sobre xeometría e xeometría diferencial. |
A1
|
B1 B2 B3 B5 B7
|
C1 C4 C5
|
Ter aptitude para os coñecementos sobre cálculo diferencial e integral. |
A1
|
B1 B2 B3 B5 B7
|
C1 C4 C5
|
Contidos |
Temas |
Subtemas |
Topoloxía en R^n |
Produto escalar, norma e distancia.
Clasificación de puntos e conxuntos.
Topoloxía en R: conxunto acotado, supremo, ínfimo, máximo e mínimo.
Coordenadas polares, cilíndricas e esféricas. |
Funcións de varias variables |
Funcións escalares e vectoriais.
Conxuntos de nivel.
Continuidade.
Continuidade en compactos. |
Diferenciación de funcións de varias variables e aplicacións |
Derivada direccional.
Derivadas parciais: propiedades e cálculo práctico.
Diferencial dunha función.
Relación entre diferencial e derivadas parciais.
Vector gradiente, relación coas derivadas direccionais.
Matriz Jacobiana.
Derivadas parciais de orde superior.
Introdución ó cálculo vectorial.
Teorema de Taylor para funcións escalares.
Puntos críticos, clasificación.
Matriz Hessiana.
Extremos condicionados: reducción da dimensión, método dos multiplicadores de Lagrange.
Teorema da función implícita e Teorema da función inversa.
|
Integración de funcións reais de unha e varias variables |
Sumas de Riemann.
Funcións integrables. Teoremas do cálculo integral: Teorema do Valor Medio, Teorema Fundamental e Regra de Barrow.
Cálculo de primitivas.
Interpolación polinómica.
Integración numérica: método de Simpson.
Cálculo de volumes.
Integrais dobres.
Integrais triples.
Cambio de variables nas integrais dobres e triples.
Aplicacións das integrais: cálculo de áreas e volumes. |
Números complexos |
O corpo dos números complexos.
Operacións: suma, produto.
Módulo e argumento.
Forma exponencial.
Operacións en forma exponencial. |
Planificación |
Metodoloxías / probas |
Competencias / Resultados |
Horas lectivas (presenciais e virtuais) |
Horas traballo autónomo |
Horas totais |
Sesión maxistral |
A1 B1 B2 B3 B5 B7 C1 C4 C5 |
30 |
45 |
75 |
Solución de problemas |
A1 B1 B2 B3 B5 B7 C1 C4 C5 |
26 |
39 |
65 |
Proba mixta |
A1 B1 B2 B3 B5 B7 C1 C4 C5 |
6 |
0 |
6 |
|
Atención personalizada |
|
4 |
0 |
4 |
|
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado |
Metodoloxías |
Metodoloxías |
Descrición |
Sesión maxistral |
Exposición oral complementada co uso de medios audiovisuais e a introdución de algunhas preguntas dirixidas aos estudantes, coa finalidade de transmitir coñecementos e facilitar a aprendizaxe. |
Solución de problemas |
Técnica mediante a que se ten que resolver unha situación problemática concreta e exercicios aplicados da materia, a partir dos coñecementos que se traballaron. |
Proba mixta |
Proba escrita utilizada para a avaliación da aprendizaxe, cuxo trazo distintivo é a posibilidade de determinar se as respostas dadas son ou non correctas. Constitúe un instrumento de medida, elaborado rigorosamente, que permite avaliar coñecementos, capacidades, destrezas, rendemento, aptitudes, actitudes, etc. |
Atención personalizada |
Metodoloxías
|
Solución de problemas |
|
Descrición |
Os contidos da materia así como as distintas metodoloxías empregadas requiren que o alumno traballe tamén autónomamente. Isto pode provocar que lle xordan dúbidas personalizadas que poderá resolver preguntando ó profesorado. Ademais, as prácticas serán guiadas polo profesorado que imparte a materia.
O alumnado con recoñecemento de dedicación a tempo parcial e dispensa académica de exención de asistencia fará uso das titorías como referente para o seguimento da materia e o traballo autónomo. |
|
Avaliación |
Metodoloxías
|
Competencias / Resultados |
Descrición
|
Cualificación
|
Proba mixta |
A1 B1 B2 B3 B5 B7 C1 C4 C5 |
Probas escritas que son utilizadas para a avaliación da aprendizaxe.
As probas constarán de dúas partes e a nota final será a suma das notas obtidas en cada unha de elas.
1) A avaliación da primeira parte realizarase no periodo de docencia mediante un exame parcial e farase, previsiblemente, en base ós contidos dos temas 1, 2, e 3. Esta parte será eliminatoria (no caso de superala, a nota gardarase para o presente curso ata a 2ª oportunidade) e recuperable.
2) A segunda parte realizarase no periodo usual de exames finais en xaneiro, xunto cunha recuperación para aqueles que non aprobaran a primeira parte no parcial.
No caso de aprobar algunha das dúas partes, ben sexa no parcial ou no exame final de xaneiro, o aprobado conservarase para o presente curso, ata a celebración do exame de 2ª oportunidade. |
80 |
Solución de problemas |
A1 B1 B2 B3 B5 B7 C1 C4 C5 |
Tras a finalización dun bloque temático serán propostos pequenas coleccións de exercicios representativos do mesmo para a súa evaluación. Dependendo do bloque temático a resolución dos mesmos realizarase no aula ou de xeito non presencial. |
20 |
|
Observacións avaliación |
O alumnado con recoñecemento de dedicación a tempo parcial e dispensa académica de exención de asistencia ás clases avaliarase coa entrega de traballos e nas probas mixtas nas mesmas condicións que o resto do alumnado. A avaliación na convocatoria adiantada de decembro farase esclusivamente a través dunha proba mixta. A avaliación na 2ª oportunidade farase seguindo os mesmos criterios que na 1ª oportunidade. A realización fraudulenta das probas ou actividades de avaliación implicará directamente a cualificación de suspenso "0" na materia na convocatoria correspondente, invalidando así calquera cualificación obtida en todas as actividades de avaliación das dúas oportunidades.
|
Fontes de información |
Bibliografía básica
|
García, A. et al. (2007). Cálculo I. Teoría y Problemas de Análisis Matemático en Una Variable. Madrid. Clagsa
García, A. et al. (2007). Cálculo II. Teoría y Problemas de Análisis Matemático en Varias Variables. Madrid. Clagsa
Burgos Román, Juan de (2007). Cálculo infinitesimal de una variable. Madrid. McGraw-Hill
Soler, M., Bronte, R., Marchante, L. (1992). Cálculo infinitesimal e integral. Madrid
García Castro, F., Gutiérrez Gómez, A. (1990-1992). Cálculo Infinitesimal. I-1,2. Pirámide. Madrid
Tébar Flores, E. (1977). Cálculo Infinitesimal. I-II. Madrid. Tébar Flores
Coquillat, F (1997). Cálculo Integral. Madrid. Tebar Flores
Spiegel, M. R. (1991). Cálculo Superior. Madrid. McGraw-Hill
Marsden, J., Tromba, A. (2010). Cálculo vectorial. ADDISON WESLEY
Larson, R., Hostetler, R., Edwards, B. (2013). Calculus. . Brooks Cole
Salas, L., Hille, E., Etgen, G. (2003). Calculus. vol I-II. Madrid. Reverté
De Diego, B. (1991). Ejercicios de Análisis: Cálculo diferencial e intergral (primer curso de escuelas técnicas superiores y facultades de ciencias). Madrid. Deimos
Varios (1990). Problemas de Cálculo Infinitesimal. Madrid. R.A.E.C. |
|
Bibliografía complementaria
|
|
As seguintes páxinas web poden resultar de interese para o estudio da materia:
www.intmath.com
www.ies.co.jp/math/java/
http://demonstrations.wolfram.com/ http://dm.udc.es/elearning/ |
Recomendacións |
Materias que se recomenda ter cursado previamente |
|
Materias que se recomenda cursar simultaneamente |
|
Materias que continúan o temario |
ÁLXEBRA/730G03006 | ESTATÍSTICA/730G03008 | ECUACIÓNS DIFERENCIAIS/730G03011 | FIABILIDADE ESTATÍSTICA E MÉTODOS NUMÉRICOS/730G03046 |
|
Observacións |
Para contribuír a acadar unha veciñanza saudábel e cumprir co obxectivo da acción número 5: “Docencia e
investigación saudábel e sustentábel ambiental e social” do "Plan de
Acción Green Campus Ferrol", a entrega dos traballos documentais que se realicen nesta materia: • Solicitaranse en formato virtual e/ou soporte informático, sen necesidade de imprimilos. • En caso de ser necesario realizalos en papel, dentro do posible: - Non se utilizarán plásticos. - Realizaranse impresións a dobre cara. - Utilizarase papel reciclado.
En xeral, farase un uso sostible dos recursos e evitaranse na medida do posible impactos negativos sobre o medio natural. Ademais, terase en conta a importancia dos principios éticos relacionados cos valores de sostibilidade nos comportamentos persoais e profesionais.
|
|