Identifying Data 2023/24
Subject (*) Fluorescence Spectroscopy and Photochemistry Code 610509108
Study programme
Mestrado Universitario en Investigación Química e Química Industrial (Plan 2020)
Descriptors Cycle Period Year Type Credits
Official Master's Degree 1st four-month period
First Optional 3
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Departamento profesorado máster
Química
Coordinador
Fernandez Perez, Maria Isabel
E-mail
isabel.fernandez.perez@udc.es
Lecturers
Fernandez Perez, Maria Isabel
Novo , Mercedes
Wajih , Al-Soufi
E-mail
isabel.fernandez.perez@udc.es
Web http://https://www.usc.gal/gl/estudos/masteres/ciencias/master-universitario-investigacion-quimica-quimica-industrial/20212022/espectro
General description CONSULTAR EL CAMPUS VIRTUAL DE LA USC
Obxectivos da materia
O obxectivo xeral da materia é que os alumnos dominen os aspectos básicos da espectroscopia electrónica e especificamente da fluorescencia, así como da fotoquímica. Incidirase especialmente na utilidade da fluorescencia para coñecer o comportamento molecular en estados electrónicos excitados e nas súas aplicacións nos eidos da Química, Bioloxía e Medicina. Despois de cursar esta materia, o alumno debería:
• Entender os aspectos básicos da espectroscopia electrónica e de fluorescencia e as propiedades moleculares en estados electrónicos excitados.
• Coñecer as técnicas experimentais para medir fluorescencia.
• Poder describir os mecanismos de extinción da fluorescencia e a súa utilidade.
• Entender os mecanismos de transferencia de enerxía electrónica e a súa utilización para estudos estruturais.
• Saber utilizar os distintos métodos baseados na fluorescencia para obter información estrutural e dinámica sobre o entorno molecular e supramolecular.
• Coñecer os tipos de sondas de fluorescencia máis importantes e as súas aplicacións.
• Ser capaz de realizar medidas de fluorescencia con seguridade e corrección.

Study programme competencies
Code Study programme competences
A1 Define concepts, principles, theories and specialized facts of different areas of chemistry.
A3 Innovate in the methods of synthesis and chemical analysis related to the different areas of chemistry
A7 Operate with advanced instrumentation for chemical analysis and structural determination.
B2 Students should apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their field of study.
B3 Students should be able to integrate knowledge and handle complexity, and formulate judgments based on information that was incomplete or limited, include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgments.
B7 Identify information from scientific literature by using appropriate channels and integrate such information to raise and contextualize a research topic
B10 Use of scientific terminology in English to explain the experimental results in the context of the chemical profession
B11 Apply correctly the new technologies to gather and organize the information to solve problems in the professional activity.
C1 CT1 - Elaborar, escribir e defender publicamente informes de carácter científico e técnico
C3 CT3 - Traballar con autonomía e eficiencia na práctica diaria da investigación ou da actividade profesional.
C4 CT4 - Apreciar o valor da calidade e mellora continua, actuando con rigor, responsabilidade e ética profesional.

Learning aims
Learning outcomes Study programme competences
AC1
AC3
AC7
BC2
BC3
BC7
BC10
BC11
CC1
CC3
CC4
AC1
AC3
AC7
BC2
BC3
BC7
BC10
BC11
CC1
CC3
CC4
AC1
AC3
AC7
BC2
BC3
BC7
BC10
BC11
CC1
CC3
CC4
AC1
AC3
AC7
BC2
BC3
BC7
BC10
BC11
CC1
CC3
CC4
AC1
AC3
AC7
BC2
BC3
BC7
BC10
BC11
CC1
CC3
CC4
AC1
AC3
AC7
BC2
BC3
BC7
BC10
BC11
CC1
CC3
CC4
AC1
AC3
AC7
BC2
BC3
BC7
BC10
BC11
CC1
CC3
CC4

Contents
Topic Sub-topic
1. Fundamentals of electronic spectroscopy and fluorescence spectroscopy Luminiscent phenomena. Radiative and nonradiative processes. Fluorescence excitation and emission spectra. Fluorescence quantum yield. Fluorescence lifetime. Effect of environment on fluorescence.
2. Experimental techniques Measurement of fluorescence spectra: the spectrofluorometer. Correction of excitation and emission spectra. Measurement of fluorescence lifetimes. Measurement of fluorescence polarization. Ultrafast techniques. Single-molecule fluorescence. Fluorescence Microscopy.
3. Fluorescence quenching Collisional or dynamic quenching. Stern-Volmer equation. Static quenching. Static and dynamic quenching. Applications to study complex formation and microheterogeneous systems.
4. Excited electronic states and photochemistry Excited-state complex formation: excimers and exciplexes. Photoinduced electron transfer. Photoinduced proton transfer. Other photochemical reactions.
5. Electronic energy transfer Electronic energy-transfer mechanisms. Förster Resonance Energy Transfer (FRET). Applications for the measurement of molecular distances and the study of supramolecular associations. Dexter mechanism of energy transfer: photosensitization and photodynamic therapy.
6. Fluorescence probes Classes of fluorescence probes: intrinsic and extrinsic. Green Fluorescence Protein. Quantum dots. Applications in biomedicine, analyses, environment, and materials studies.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 B2 B3 B10 12 6 18
Seminar A7 B2 B3 B7 B10 7 13 20
Supervised projects A3 B2 B3 B7 B10 B11 C1 C3 C4 20 13 33
Speaking test C1 C3 0 0 0
Objective test A1 A3 A7 B2 B10 C4 2 0 2
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech
Seminar
Supervised projects
Speaking test
Objective test

Personalized attention
Methodologies
Supervised projects
Description
Tutorías programadas por el profesor y coordinadas por la Comisión Académica del Máster. Supondrán para cada alumno 2 horas.

Assessment
Methodologies Competencies Description Qualification
Seminar A7 B2 B3 B7 B10 Evaluation of problems submitted for each topic: 10%.
Evaluation of practical cases: 20%
30
Supervised projects A3 B2 B3 B7 B10 B11 C1 C3 C4 Oral presentation of a research article: 10%. 10
Objective test A1 A3 A7 B2 B10 C4 60% of the final mark: evaluation of the final exam of the subject with conceptual questions and problems 60
 
Assessment comments

The passing grade will be obtained for a final grade of 5 out of 10. The final grade, both of first and second opportunity, will be based on the evaluation of the following aspects:

• 40% of the final mark: continuous evaluation based on the following contributions:

Evaluation of problems submitted for each topic: 10%.

Evaluation of practical cases: 20%

Oral presentation of a research article: 10%.

• 60% of the final mark: evaluation of the final exam of the subject with conceptual questions and problems, complementary to the continuous evaluation both in the first and second opportunity and in any of the scenarios. It will be necessary to obtain a minimum mark of 4 out of 10 in the exam to pass the course.

The assessment of students who repeat the subject will be governed by the same assessment standards as that of students taking the subject for the first time.

PLAGIARISM AND MISUSE OF TECHNOLOGIES IN THE CONDUCT OF TASKS OR TESTS: "For cases of fraudulent execution of exercises or tests, the provisions of the Regulations for the evaluation of student academic performance and revision of qualifications will apply."

CONTINGENCY PLAN FOR REMOTE TEACHING ACTIVITIES: The evaluation system will be the same regardless of the type of teaching used (face-to-face or virtual), with the only difference that the evaluation activities will be carried out, according to what the competent authorities establish, either in person in the classroom or remotely through the telematic means available at the USC.


Sources of information
Basic Bernard Valeur (2012). Molecular Fluorescence. Principles and Applications, 2nd Ed. Wiley-VCH, Weinheim
Petr Klán y Jacob Wirz (2009). Photochemistry of Organic Compounds: From Concepts to Practice,. Wiley, Chichester
Joseph R. Lakowicz (2006). Principles of Fluorescence Spectroscopy, 3rd Ed. Springer, New York
Paul R. Selvin y Taekjip Ha (2008). Single-Molecule Techniques. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

Review and research articles related to the subject.

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.