Identifying Data 2023/24
Subject (*) Chemistry of the Elements Code 610G04011
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Second Obligatory 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Química
Coordinador
Fernandez Lopez, Alberto A.
E-mail
alberto.fernandez@udc.es
Lecturers
Fernandez Lopez, Alberto A.
Fernandez Sanchez, Jesus Jose
E-mail
alberto.fernandez@udc.es
jesus.fernandezs@udc.es
Web http://campusvirtual.udc.gal/course/view.php?id=15399
General description O estudo da Química dividiuse historicamente en grandes áreas de coñecemento, unha delas é a Química Inorgánica. Esta disciplina está dedicada ao estudo teórico e experimental das propiedades, estrutura e reactividade de todos os elementos da táboa periódica, así como o de todos os compostos derivados deles.
Por este motivo, dous das características máis característicos da Química Inorgánica son, por un lado, a súa gran diversidade e, por outro, o seu carácter interdisciplinario. A relevancia desta disciplina vai máis alá dos límites puramente académicos. Así, unha gran variedade de produtos inorgánicos úsanse habitualmente na vida cotiá, destacando moitos deles pola súa importante participación en procesos industriais e tecnolóxicos que contribúen decisivamente ao desenvolvemento da sociedade.
A materia "Química dos elementos" forma parte do campo da QUÍMICA INORGÁNICA. No currículo deste Grao, o ensino da materia localízase no primeiro semestre do segundo curso e aborda o estudo e síntese sistemáticos dos elementos e dos seus principais compostos.

Study programme competencies
Code Study programme competences
A1 CE1 - Comprender los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
A2 CE2 - Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
A8 CE8 - Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de la instrumentación y de los productos y nanomateriales.
B1 CB1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
B2 CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
B9 CG4 - Trabajar de forma autónoma con iniciativa.
C1 CT1 - Expresarse correctamente, tanto de forma oral coma escrita, en las lenguas oficiales de la comunidad autónoma
C2 CT2 - Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida

Learning aims
Learning outcomes Study programme competences
To know and rationalize the chemical behavior of the elements and their main compounds, as well as their individual properties and possibilities of combination, according to appropriate models and theories, according to their situation in the periodic table. To know the general properties of coordination and organometallic compounds. Tp know the structure and nature of the bond in inorganic solids. A1
A2
A3
A7
A8
B1
B2
B3
B6
B7
B8
B9
C1
C2
C3

Contents
Topic Sub-topic
Part I. Chemistry of elements and their compounds Periodic table elements. Binary combinations. Ternary combinations. Coordination compounds. Organometallic compounds. Inorganic solids.
Part II: Experimental Inorganic Chemistry Synthesis of elements. Synthesis of compounds.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A2 A3 B1 B6 B8 B9 C1 C2 C3 28 42 70
Problem solving A2 A3 A7 B1 B2 B3 B7 B8 B9 C1 C3 8 24 32
Laboratory practice A7 A8 B8 B9 C1 14 15 29
Mixed objective/subjective test A1 A2 A3 A7 B1 B2 B3 B6 B7 B8 B9 C1 C2 C3 4 14 18
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Lectures dedicated to introducing the most relevant contents of the course. Active participation of students are encouraged as an important part of the lectures methodology. Prior to each lecture students are supposed to have read the suggested readings related to the topics of the lecture. If necessary, the students are expected to prepare by themselves part of the course contents in the student’s personal work hours. Under previously stablished conditions students might also be asked to solve practical cases outside of the classroom.
Problem solving Classes given in small groups of students, which must participate actively. Problem-solving classes are dedicated to solving the doubts arisen during lectures and the preparatory readings. They are also dedicated to the resolution of problems and questions previously given to the students or to the intensive study of a particular topic through the active discussion methodology. If necessary, practical cases may also be solved under previously stablished conditions.
Laboratory practice Laboratory classes which are dedicated to the synthesis, isolation and characterization of organometallic compounds.
Prior to the lab class, the student studies the theoretical and synthetic aspects of each laboratory experiment using the recommended bibliographic sources. Before starting the laboratory work, the student has to show, in a personal tutorial with the professor, that has reached the necessary level of knowledge and skills necessary to understand and carry out the experiment safely. During the laboratory work, the student must work carefully paying special attention to the safety rules and showing the rigor and efficiency characteristic of the scientific method. The preparatory work, the experimental description (laboratory diary) and the conclusions drawn must be recorded in the laboratory notebook, which must be given to the professor before the deadline.
Mixed objective/subjective test The mixed test is a written exam, which consists of essay-type questions in which the student must find the answer to a more or less complex problem, which may be of logic or numeric nature. It may also contain objective test questions.

Personalized attention
Methodologies
Laboratory practice
Description
Tutorials are scheduled by the professor prior to the laboratory practice sessions. In these tutorials, the student will show the skills corresponding to the preparation of the practices. In a second mandatory tutorial, the student will demonstrate the correct pre-lab preparation (see the methodology of laboratory practices) once the small doubts have been solved. In any case, and given that the content of the laboratory practices is closely related to the theoretical part, these tutorials are useful for the overall subject.
Part-time students (according to the UDC regulations) will be given personalized tutorial support:
The students will be given tutorial support according to their needs at any moment.
Particularly, those students will be periodically given handouts with problems and questions designed to gauge the acquisition of competencies. The students will solve those problems individually and, after this, attend to a tutorial to solve doubts and correct the problems.
On request, the students will also be given tutorial support in order to prepare the laboratory experiments.

Assessment
Methodologies Competencies Description Qualification
Laboratory practice A7 A8 B8 B9 C1 During the pre-lab tutorial, the professor assess the rigorous preparation of the theoretical and experimental parts of the laboratory experiment which concerns both the synthetic and the characterization methodology.
The professor also assesses the laboratory work, particularly: the organization, safety work, knowledge of the material and technical procedures, the manual skill and, especially, the ability to find relationships between the experimental procedure carried out and the theoretical background acquired during the previous work.
The laboratory notebook will also be marked. It consists of four parts: preparatory work, exact description of laboratory work (laboratory diary), characterization of the products synthesized and results and conclusions drawn from the experiment.
15
Problem solving A2 A3 A7 B1 B2 B3 B7 B8 B9 C1 C3 During the problem-solving classes, the professor assesses the active participation of students as well as their reasoning and oratory skills. If necessary, the students might take a brief test consisting of short answers or multiple election questions, during the lecture hours. The solution and presentation of a study case may also contribute to the assessment procedure. The marks corresponding to these activities will be added to the “lecture” marks. 25
Guest lecture / keynote speech A1 A2 A3 B1 B6 B8 B9 C1 C2 C3 During lectures, the professor assesses the active participation of students as well as their reasoning and oratory skills.
If necessary, the students might take a brief test consisting of short answers or multiple election questions, during the lecture hours. The solution and presentation of a study case may also contribute to the assessment procedure. The marks corresponding to these activities will be added to the “problem solution” marks.
0
Mixed objective/subjective test A1 A2 A3 A7 B1 B2 B3 B6 B7 B8 B9 C1 C2 C3 Students will take the mixed test in the hours designed by the Faculty. The assessment criteria will be given before the exam. 60
 
Assessment comments

Students will be assessed according to thefollowing contributions.

C1 Mixed text. (Students must attain aminimum of the 45% of the maximum mark to pass the subject)

C2 Laboratory practice. (Students mustattain a minimum of the 45% of the maximum mark to pass the subject. Attendanceto laboratory classes is mandatory)

C3 Keynote speech + problem solving +short test.

C4 Student progression.

In order to pass the subject, studentshave to attain a minimum mark of 5 points corresponding to the formula:

0,6(C1) + 0,25(C2) + 0,15(C3).

The contribution C4 “Student progression”will be added to the overall mark only if the sum C1 + C2+ C3 is 5 or higher.(In any case, the maximum overall mark will be 10 points)

Participation in “extra activities” willincrease the final mark.

The student must attain a minimum of the45% of the maximum mark in contributions C1 and C2. If the overall mark is 5points or higher but C1 and C2 do not reach the 45% threshold, the final markwill be 4.5 points.

In order to get the “no presentado” markstudents cannot attend to the laboratory classes

In the “second opportunity” the formula 0,85(C1)+ 0,15(C2) will be used to calculate the overall mark, complying with the aforementionedminimum thresholds.

The mark “matricula de honor” will begranted preferably to the students that have passed the subject in the firstopportunity.

Attendance to laboratory practice classesis mandatory for part-time students (according to the UDC regulations). Forthose students, the contribution to the final marks is as follows: 85% of thefinal marks corresponds to the mixed text and the remaining 15% corresponds tothe laboratory practice. The marking system (percentages) will be the same forboth opportunities. The condition of “no persentado” will be granted to thosepart-time students who do not take the mixed text.

Any case of
fraud during exams, tests, assays or any other assessed activity will result
in the  imposition of sanctions as outlined in the regulations “Law
3/2022, de 24 de febrero, de convivencia universitaria y el reglamento disciplinar del estudiantado
de la UDC."”


Sources of information
Basic E. Gutiérrez Ríos (1984). Química Inorgánica. Barcelona, Reverté, 2ª ed.
D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, H.T. Weller y F.A. Armstrong (2008). Química Inorgánica. México, McGraw-Hill 4ª Ed. (en inglés 6ª Ed. 2014)

Complementary E.C. Housecroft y A.G. Sharpe (2006). Química Inorgánica. Madrid, Pearson 2ª Ed. (en inglés 4ª Ed 2012)
G. Rayner-Canham (2000). Química Inorgánica descriptiva. Pearson Educación, México 2ª Ed.


Recommendations
Subjects that it is recommended to have taken before
Chemistry: Equilibrium and Change/610G04008
Chemistry: Structure and Bonding/610G04005
Integrated Basic Laboratory/610G04004

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

The subject “Chemistry of elements” is dedicated to study Inorganic Chemistry therefore, is highly recommendable to have passed all the first year chemistry subjects.

Complementary material will be given to the students through Moodle.

It is highly advisable to attend all classes and active participation in all activities.

"Gender perspective: as stated in the transversal competencies of the degree (C4), the development of critical, open, and respectful citizenship with diversity in our society will be promoted, highlighting the equal rights of students without discrimination based on gender or sexual condition. The inclusive language will be used in the material and the development of the sessions. We will work to identify and modify sexist prejudices and attitudes and influence the environment to modify them and promote values of respect and equality. 

Green Campus Faculty of Science Programme: to help achieve an immediate sustainable environment and comply with point 6 of the "Environmental Declaration of the Faculty of Science (2020)", the documentary work carried out in this area will be requested in a virtual format and computer support. If on paper, no plastics shall be used, double-sided printing shall be carried out, recycled paper shall be used and drafts shall be avoided".

Translated with www.DeepL.com/Translator (free version)



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.