Identifying Data 2023/24
Subject (*) Quantum Computing and High Performance Computing Code 614551009
Study programme
Máster Universitario en Ciencia e Tecnoloxías de Información Cuántica
Descriptors Cycle Period Year Type Credits
Official Master's Degree 2nd four-month period
First Optional 3
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Enxeñaría de Computadores
Coordinador
Andrade Canosa, Diego
E-mail
diego.andrade@udc.es
Lecturers
Andrade Canosa, Diego
Martin Santamaria, Maria Jose
E-mail
diego.andrade@udc.es
maria.martin.santamaria@udc.es
Web http://https://quantummastergalicia.es
General description O advenimiento da computación cuántica suporá un incremento sen precedentes na capacidade de cómputo da informática de consumo. Trasladar estas melloras á computación de altas prestacións (HPC) abrirá un potencial de desenvolvemento sen precedentes a certas aplicacións estratéxicas (dinámica de fluídos computacional, adestramentos de IA, aplicacións financeiras a gran escala, bioinformática, etc...). Para iso, esta materia explicará como deseñar solucións HPC que permitan integrar a gran escala computación clásica de altas prestacións, entrada/saída masiva e aceleradores cuánticos. Por outra banda, é necesario aprender a detectar oportunidades para aplicar esta clase de solucións en problemas resoltos con solucións clásicas HPC. Finalmente, a avaliación do rendemento permitiranos identifica pescozos de botella no rendemento como paso previo a aplicar diferentes optimizacións.

Study programme competencies
Code Study programme competences
A15 CON_15 Have knowledge of high-level aspects of quantum computing: learning quantum machines, quantum simulators, architectures, etc.
B1 HD01 Analyze and break down a complex concept, examine each part and see how they fit together
B2 HD02 Classify and identify types or groups, showing how each category is different from the others
B3 HD03 Compare and contrast and point out similarities and differences between two or more topics or concepts
B6 HD11 Prepare accurately the relevant questions for a specific problem.
B8 HD13 Improvise solutions in an innovative way to solve a problem.
B12 HD23 Communicate using the expected norms for the chosen medium.
B13 HD24 Actively participate in face-to-face activities in the classroom.
B14 HD31 Assign resources and responsibilities so that all members of a team can work optimally
B16 HD33 Set goals for the group to analyze the situation, decide what outcome is desired and clearly set an achievable goal.
C1 C1. Adequate oral and written expression in the official languages.
C2 C2. Mastering oral and written expression in a foreign language.
C3 C3. Using ICT in working contexts and lifelong learning.
C4 C4. Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C5 C5. Understanding the importance of entrepreneurial culture and the useful means for enterprising people.
C6 C6. Acquiring skills for healthy lifestyles, and healthy habits and routines.
C7 C7. Developing the ability to work in interdisciplinary or transdisciplinary teams in order to offer proposals that can contribute to a sustainable environmental, economic, political and social development.
C8 C8. Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of society.
C9 C9. Ability to manage times and resources: developing plans, prioritizing activities, identifying critical points, establishing goals and accomplishing them.

Learning aims
Learning outcomes Study programme competences
Conocer los algoritmos y estrategias de computación clásica inspirados en computación cuántica: redes tensoriales, estados producto de matrices, etc. AJ15
BJ1
BJ2
BJ3
BJ6
BJ8
BJ12
BJ13
BJ14
BJ16
CJ1
CJ2
CJ3
CJ4
CJ5
CJ6
CJ7
CJ8
CJ9
Conocer y saber aplicar aspectos avanzados de computación cuántica: aprendizaje cuántico, arquitectura cuántica eficiente, modo de operación de los aceleradores cuánticos, computación de altas prestaciones, sistemas cuánticos basados en reglas y aplicaciones a cálculo numérico. AJ15
BJ1
BJ2
BJ3
CJ9
Conocer escenarios de aplicación práctica de la computación cuántica en problemas de interés científico, tecnológico y financiero. Identificar de dominios que exhiban ventaja cuántica. Conocer las instituciones y empresas que son actores en la computación cuántica, adquiriendo una prespectiva de la agenda que es razonable esperar en los próximos años. AJ15
BJ1
BJ2
BJ3
CJ1
CJ2
CJ5
CJ6
CJ9

Contents
Topic Sub-topic
Fundamentos da Computación de Altas Prestacións (HPC) .
Arquitectura das Unidades de Procesamiento Cuántico .
Integración de Computación Clásica e Cuántica en contornas HPC .
Casos de uso de computación cuántica en contornas HPC .
Avaliación de rendemento en Computación Cuántica .

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Problem solving B1 C3 5 10 15
Laboratory practice B3 C1 C2 10 10 20
Objective test B3 C1 2 4 6
Supervised projects A15 B1 B2 2 8 10
Oral presentation C4 C5 C6 C9 2 2 4
Guest lecture / keynote speech A15 B1 B2 B3 B6 B8 B12 B13 B14 B16 C1 C2 C5 C6 C7 C8 C9 10 10 20
 
Personalized attention 0 0
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Problem solving Proposta e solución de pequenos problemas relacionados coa materia
Laboratory practice Supostos prácticos que implican o uso de ferramentas e métodos aprendidos durante o mestrado ou nesta materia
Objective test Proba escrita que avalía a adquisición de certos coñecementos da materia polo alumnado
Supervised projects Realización de traballos académicamente dirixidos
Oral presentation Presentación oral dun traballo relacionado cos contidos da materia
Guest lecture / keynote speech Explicación dirixida polo docente e que implica a exposición dun tema e a discusión posterior co alumnado

Personalized attention
Methodologies
Laboratory practice
Supervised projects
Description
Durante as sesión prácticas o docente fará unha breve explicación introdutoria. Durante o periodo de traballo do alumnado fará un seguimento e asesoramento personalizado do traballo.

Assessment
Methodologies Competencies Description Qualification
Laboratory practice B3 C1 C2 Haberá varios entregables asociados as prácticas que serán avaliados 30
Objective test B3 C1 Haberá unha proba final na que se avaliará por escrito o desempeño do alumnado 30
Supervised projects A15 B1 B2 Realización de traballos dirixidos por parte do alumnado 20
Oral presentation C4 C5 C6 C9 Presentación oral dun tema ante o profesorado e o resto dos estudantes 20
 
Assessment comments

Sources of information
Basic Martin Ruefenacht (2022). Bringing quantum acceleration to supercomputers. Leibniz-Rechenzentrum
Travis S. Humble (2021). Quantum Computers for High-Performance Computing. IEEE
Noson S. Yanofsky (2008). Quantum Computing for Computer Scientists. Cambridge University Press
Jack D. Hidary (2021). Quantum Computing: An Applied Approach. Springer

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.