Identifying Data 2023/24
Subject (*) Quantum Computing Architectures Code 614551022
Study programme
Máster Universitario en Ciencia e Tecnoloxías de Información Cuántica
Descriptors Cycle Period Year Type Credits
Official Master's Degree 1st four-month period
First Optional 3
Language
Spanish
Galician
Teaching method Face-to-face
Prerequisites
Department Ciencias da Computación e Tecnoloxías da Información
Coordinador
Moret Bonillo, Vicente
E-mail
vicente.moret@udc.es
Lecturers
Alvarez Estevez, Diego
Moret Bonillo, Vicente
E-mail
diego.alvareze@udc.es
vicente.moret@udc.es
Web http://n9.cl/27996
General description Aínda non se resolveu o problema de que hardware sería ideal para a computación cuántica. Neste sentido, definíronse unha serie de condicións que deben cumprir as arquitecturas cuánticas, e que se poden atopar na coñecida lista de Di Vincenzo. Non obstante, en toda arquitectura cuántica débense manter unha serie de restricións, como son as seguintes: o sistema debe poder ser inicializado, é dicir, debe levarse a un estado de arranque coñecido e controlado; tamén debe ser posible manipular os qubits de forma controlada, cun conxunto de operacións que forman un conxunto universal de portas lóxicas (co fin de reproducir calquera outra porta lóxica posible). Do mesmo xeito, o sistema debe manter a súa coherencia cuántica, ademais de poder ler o estado final do sistema, despois do cálculo. Finalmente, o sistema ten que ser escalable: ten que haber unha forma definida de aumentar o número de qubits, para facer fronte a problemas de maior custo computacional.

Study programme competencies
Code Study programme competences
A4 CON_04 Have knowledge of quantum computing, algorithms, circuits, their programming in different languages and accessible platforms.
A16 CON_16 Have knowledge of quantum computer architectures, different platforms and "full stack".
B1 HD01 Analyze and break down a complex concept, examine each part and see how they fit together
B3 HD03 Compare and contrast and point out similarities and differences between two or more topics or concepts
B6 HD11 Prepare accurately the relevant questions for a specific problem.
B8 HD13 Improvise solutions in an innovative way to solve a problem.
B12 HD23 Communicate using the expected norms for the chosen medium.
B13 HD24 Actively participate in face-to-face activities in the classroom.
B14 HD31 Assign resources and responsibilities so that all members of a team can work optimally
B16 HD33 Set goals for the group to analyze the situation, decide what outcome is desired and clearly set an achievable goal.
C1 C1. Adequate oral and written expression in the official languages.
C2 C2. Mastering oral and written expression in a foreign language.
C3 C3. Using ICT in working contexts and lifelong learning.
C4 C4. Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C7 C7. Developing the ability to work in interdisciplinary or transdisciplinary teams in order to offer proposals that can contribute to a sustainable environmental, economic, political and social development.
C8 C8. Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of society.

Learning aims
Learning outcomes Study programme competences
Adquirir conocimientos de computación cuántica, algoritmia y circuitos cuánticos. AJ4
AJ16
BJ1
BJ3
BJ6
BJ8
BJ12
BJ13
BJ16
CJ1
CJ2
CJ3
CJ4
CJ7
CJ8
Programación en diferentes lenguajes y plataformas accesibles. AJ4
AJ16
BJ1
BJ3
BJ6
BJ8
BJ12
BJ13
BJ14
BJ16
CJ1
CJ2
CJ3
CJ4
CJ7
CJ8
Adquirir conocimientos sobre aspectos de alto nivel en computación cuántica: diseño de máquinas cuánticas, simuladores cuánticos y arquitecturas. AJ4
AJ16
BJ1
BJ3
BJ6
BJ8
BJ12
BJ13
BJ14
BJ16
CJ1
CJ2
CJ3
CJ4
CJ7
CJ8

Contents
Topic Sub-topic
1. INTRODUCCIÓN Antecentes
Contexto
2. REQUISITOS DEL COMPUTADOR CUÁNTICO
Requisitos funcionales
Requisitos no funcionales
Integración de requisitos
3. COMPONENTES Y MÉTODOS
Registros de cómputo
Puertas unitarias
Transiciones de estados
4. ARQUITECTURAS CLÁSICAS
Arquitectura de Benioff
Arquitectura de Kane
Arquitectura de Deutsch
5. EL ORDENADOR CUÁNTICO DE FEYNMAN Operadores de aniquilación
Operadores de creación
El Hamiltoniano de la computación cuántica
Diseño y desempeño del ordenador cuántico
6. CONSIDERACIONES FINALES Análisis crítico
Discusión de aproximaciones
Conclusiones

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A4 A16 B1 B3 B6 B8 B12 B13 B14 B16 C1 C2 C3 C4 C7 C8 10 50 60
ICT practicals A4 A16 B1 B3 B6 B8 B12 B13 B14 B16 C1 C2 C3 C4 C7 C8 15 0 15
 
Personalized attention 0 0 0
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Explicación en el aula de los contenidos de la materia.
Resolución de problemas y supuestos prácticos.
Realización de seminarios interactivos.
ICT practicals Resolución de problemas prácticos en entornos TIC.
Realización en equipo de prácticas de laboratorio con simuladores cuánticos.

Personalized attention
Methodologies
Description

Incluye clases teóricas (expositivas e interactivas), debates, resolución de problemas, seminarios, y prácticas de laboratorio en entornos TIC.

Assessment
Methodologies Competencies Description Qualification
Guest lecture / keynote speech A4 A16 B1 B3 B6 B8 B12 B13 B14 B16 C1 C2 C3 C4 C7 C8 Evaluación continua de actividades realizadas individualmente.
Evaluación continua de actividades realizadas en equipo.
Prueba final de desarrollo de cinco preguntas cortas de la materia.
50
ICT practicals A4 A16 B1 B3 B6 B8 B12 B13 B14 B16 C1 C2 C3 C4 C7 C8 Evaluación de prácticas individuales.
Evaluación de prácticas realizadas en equipo.
50
 
Assessment comments
No se establece ninguna nota de corte, ni en Teoría ni en Prácticas.
La nota final se obtendrá a partir de la siguiente ecuación: Nota_Final = 0.5 x (Nota_Teoría + Nota_Prácticas)
Para aprobar la asignatura, se tiene que cumplir que Nota_Final sea mayor o igual a 5.00 puntos.

Sources of information
Basic Richard P. Feynman (2001). Feynman Lectures On Computation. CRC Press
Noson S. Yanofsky, Mirco A. Mannucci (2009). Quantum Computing for Computer Scientists. Cambridge University Press

After presenting the necessary prerequisites, the material is organized to look at different aspects of quantum computing from the specific standpoint of computer science. There are chapters on computer architecture, algorithms, programming languages, theoretical computer science, cryptography, information theory, and hardware. The text has step-by-step examples, more than two hundred exercises with solutions, and programming drills that bring the ideas of quantum computing alive for today's computer science students and researchers.

Complementary Vicente Moret Bonillo (2017). Adventures in Computer Science . Springer

The main focus of this textbook is the basic unit of information and the way in which our understanding of this has evolved over time. In particular the author covers concepts related to information, classical computing, logic, reversible computing, quantum mechanics, quantum computing, thermodynamics and some artificial intelligence and biology, all approached from the viewpoint of computer sciences.


Recommendations
Subjects that it is recommended to have taken before
Quantum Mechanics I/614551001
Quantum Mechanics II/614551002
Fundamentals of Quantum Information/614551003
Fundamentals of Quantum Communications/614551005
Introduction to Quantum Computing/614551004

Subjects that are recommended to be taken simultaneously
Quantum Computing Tools/614551006
Quantum Computing and Machine Learning/614551008
Programming and Implementation of Quantum Algorithms/614551007

Subjects that continue the syllabus
Practical Applications of Quantum Computing/614551010
Numerical Methods in Quantum Computing/614551025
Quantum Computing and High Performance Computing/614551009
Error Correction Codes/614551013
Rule-Based Quantum Systems/614551029

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.