Identifying Data 2023/24
Subject (*) Rule-Based Quantum Systems Code 614551029
Study programme
Máster Universitario en Ciencia e Tecnoloxías de Información Cuántica
Descriptors Cycle Period Year Type Credits
Official Master's Degree 2nd four-month period
First Optional 3
Language
Spanish
Galician
Teaching method Face-to-face
Prerequisites
Department Ciencias da Computación e Tecnoloxías da Información
Coordinador
Moret Bonillo, Vicente
E-mail
vicente.moret@udc.es
Lecturers
Moret Bonillo, Vicente
E-mail
vicente.moret@udc.es
Web http://n9.cl/yx2z48
General description Este curso trata de establecer sinerxías entre dúas áreas de investigación e desenvolvemento aparentemente inconexas: a intelixencia artificial e a computación cuántica. O curso comeza cunha breve descrición das orixes da intelixencia artificial simbólica e do tipo de problemas que se pretende resolver. A continuación, céntrase nun tipo específico de programas simbólicos de intelixencia artificial, os sistemas baseados en regras. Os aspectos relacionados cos sistemas baseados en regras trataranse de forma exhaustiva e rigorosa desde a perspectiva da computación cuántica. Esta materia inclúe o desenvolvemento de modelos cuánticos para o tratamento do coñecemento inexacto, e a construción dunha arquitectura cuántica equivalente a un circuíto inferencial convencional. O asunto conclúe coa construción dun sistema baseado en regras cuánticas.

Study programme competencies
Code Study programme competences
A3 CON_03 Know the physical bases that allow information to be coded and processed. Understanding of the new rules that Quantum Mechanics imposes for its processing.
A4 CON_04 Have knowledge of quantum computing, algorithms, circuits, their programming in different languages and accessible platforms.
B1 HD01 Analyze and break down a complex concept, examine each part and see how they fit together
B3 HD03 Compare and contrast and point out similarities and differences between two or more topics or concepts
B6 HD11 Prepare accurately the relevant questions for a specific problem.
B8 HD13 Improvise solutions in an innovative way to solve a problem.
B12 HD23 Communicate using the expected norms for the chosen medium.
B13 HD24 Actively participate in face-to-face activities in the classroom.
B14 HD31 Assign resources and responsibilities so that all members of a team can work optimally
B16 HD33 Set goals for the group to analyze the situation, decide what outcome is desired and clearly set an achievable goal.
C1 C1. Adequate oral and written expression in the official languages.
C2 C2. Mastering oral and written expression in a foreign language.
C3 C3. Using ICT in working contexts and lifelong learning.
C4 C4. Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C7 C7. Developing the ability to work in interdisciplinary or transdisciplinary teams in order to offer proposals that can contribute to a sustainable environmental, economic, political and social development.
C8 C8. Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of society.

Learning aims
Learning outcomes Study programme competences
Aprender a establecer sinergias entre la inteligencia artificial simbólica y la computación cuántica. AJ3
AJ4
BJ1
BJ3
BJ6
BJ8
BJ12
BJ13
BJ14
BJ16
CJ1
CJ2
CJ3
CJ4
CJ7
CJ8
Adquirir conocimientos de computación cuántica, algoritmia y circuitos cuánticos. AJ3
AJ4
BJ1
BJ3
BJ6
BJ8
BJ12
BJ13
BJ14
BJ16
CJ1
CJ2
CJ3
CJ4
CJ7
CJ8
Programación en diferentes lenguajes y plataformas accesibles. AJ3
AJ4
BJ1
BJ3
BJ6
BJ8
BJ12
BJ13
BJ14
BJ16
CJ1
CJ2
CJ3
CJ4
CJ7
CJ8
Adquirir conocimientos sobre aspectos de alto nivel en computación cuántica: diseño de máquinas cuánticas, simuladores cuánticos y arquitecturas. AJ3
AJ4
BJ1
BJ3
BJ6
BJ8
BJ12
BJ13
BJ14
BJ16
CJ1
CJ2
CJ3
CJ4
CJ7
CJ8

Contents
Topic Sub-topic
Introducción Antecedentes
Inteligencia artificial simbólica
Sistemas de Producción Conocimiento declarativo
Conocimiento procedimental
Motor de inferencias
Circuitos Inferenciales Cuánticos
Representación cuántica del conocimiento
Propagación cuántica del conocimiento
Diseño de circuitos cuánticos categóricos
Representación Cuántica del Conocimiento Inexacto
Conocimiento inexacto
Conocimiento impreciso
Incertidumbre y propagación
Modelo Cuántico de Factores de Certeza Medidas de confianza
Factores de certeza
Aproximación cuántica del modelo S-B
Implementación cuántica del modelo S-B
Consideraciones Finales Análisis crítico
Conclusiones

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A3 A4 B1 B3 B6 B8 B12 B13 B14 B16 C1 C2 C3 C4 C7 C8 10 50 60
ICT practicals A3 A4 B1 B3 B6 B8 B12 B13 B14 B16 C1 C2 C3 C4 C7 C8 15 0 15
 
Personalized attention 0 0 0
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Explicación en el aula de los contenidos de la materia.
Resolución de problemas y supuestos prácticos.
Realización de seminarios interactivos.
ICT practicals Resolución de problemas prácticos en entornos TIC.
Realización en equipo de prácticas de laboratorio con simuladores cuánticos.

Personalized attention
Methodologies
Description


Assessment
Methodologies Competencies Description Qualification
Guest lecture / keynote speech A3 A4 B1 B3 B6 B8 B12 B13 B14 B16 C1 C2 C3 C4 C7 C8 Evaluación continua de actividades realizadas individualmente.
Evaluación continua de actividades realizadas en equipo.
Prueba final de desarrollo de cinco preguntas cortas de la materia.
50
ICT practicals A3 A4 B1 B3 B6 B8 B12 B13 B14 B16 C1 C2 C3 C4 C7 C8 Evaluación de prácticas individuales.
Evaluación de prácticas realizadas en equipo.
50
 
Assessment comments

No se establece ninguna nota de corte, ni en Teoría ni en
Prácticas.

La nota final se obtendrá a partir de la siguiente ecuación:
Nota_Final = 0.5 x (Nota_Teoría + Nota_Prácticas)

Para aprobar la asignatura, se tiene que cumplir que Nota_Final
sea mayor o igual a 5.00 puntos.


Sources of information
Basic Stuart Jonathan Russell & Peter Norvig (2021). Artificial Intelligence: A Modern Approach. Pearson
Andreas Wichert (2020). Principles of Quantum Artificial Intelligence. World Scientific

ArtificialIntelligence: A Modern Approach explores the full breadth and depth of the field of artificialintelligence (AI). The 4th Edition brings readers up to date on the latest technologies,presents concepts in a more unified manner, and offers new or expanded coverageof machine learning, deep learning, transfer learning, multi agent systems,robotics, natural language processing, causality, probabilistic programming,privacy, fairness, and safe AI.

Complementary


Recommendations
Subjects that it is recommended to have taken before
Quantum Mechanics I/614551001
Quantum Mechanics II/614551002
Fundamentals of Quantum Information/614551003
Fundamentals of Quantum Communications/614551005
Introduction to Quantum Computing/614551004

Subjects that are recommended to be taken simultaneously
Numerical Methods in Quantum Computing/614551025
Quantum Computing Tools/614551006
Quantum Computing and Machine Learning/614551008
Quantum Computing Architectures/614551022
Programming and Implementation of Quantum Algorithms/614551007
Error Correction Codes/614551013

Subjects that continue the syllabus
Practical Applications of Quantum Computing/614551010
Quantum Computing and High Performance Computing/614551009

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.