Identifying Data 2023/24
Subject (*) Heat Transfer and Steam Generators Code 631G03022
Study programme
Grao en Máquinas Navais
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Third Optional 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Ciencias da Navegación e Enxeñaría Mariña
Coordinador
Baaliña Insua, Alvaro
E-mail
alvaro.baalina@udc.es
Lecturers
Baaliña Insua, Alvaro
Garcia-Bustelo Garcia, Enrique Juan
E-mail
alvaro.baalina@udc.es
enrique.garcia-bustelo@udc.es
Web http://https://estudos.udc.es/es/subject/631G02V02/631G02353
General description Nesta materia desenrólanse conceptos necesarios para a comprensión da maior parte dos procesos que ocorren nun xerador de vapor, tanto a bordo dun buque como en instalacións terrestres.
A descrición dos procesos e a súa análise crítica faculta ao alumno á hora de coñecer os detalles de deseño, operación e mantemento deste tipo de equipos, así como a súa influencia sobre a operación doutras instalacións ás que adoitan estar ligadas, como pode ser o caso de instalacións de propulsión, de xeración de enerxía eléctrica, calefacción, etc.
Sen o coñecemento dos conceptos desenvolvidos nesta materia resulta dificultosa a comprensión doutras materias do plan de estudos, entre as que se atopan Turbinas de vapor e gas, Sistemas auxiliares do buque e Condución de Cámara de Máquinas.
Para cursar a materia é conveniente ter coñecementos previos de Física e Matemáticas.

Study programme competencies
Code Study programme competences
A1 CE01 - Realizar unha garda de máquinas segura
A2 CE02 - Facer funcionar a maquinaria principal e auxiliar e os sistemas de control correspondentes.
A5 CE05 - Utilizar debidamente as ferramentas de man, máquinas ferramenta e instrumentos de medición para as operacións de fabricación, detección de avarías e reparación a bordo do buque.
A6 CE06 - Mantemento e reparación das máquinas e o equipo de a bordo.
A8 CE08 - Vixiar o cumprimento das prescricións lexislativas.
A9 CE09 - Emprego do inglés escrito e falado.
A73 CE73 - Modelizar situacións e resolver problemas con técnicas ou ferramentas físico-matemáticas.
A74 CE74 - Avaliar de forma cualitativa e cuantitativa os datos e resultados, así como a representación e interpretación matemáticas de resultados obtidos experimentalmente.
A78 CE78 - Adquirir coñecementos de termodinámica aplicada e da transmisión da calor.
A87 CE87 - Realizar operacións de explotación óptima das instalacións do buque e marítimas e industriais.
A89 CE89 - Poñer en marcha e operar novas instalacións en buques, instalacións marítimas e industriais.
A90 CE90 - Operar, reparar, manter e optimizar a nivel operacional as instalacións industriais relacionadas coa enxeñería mariña, como motores alternativos de combustión interna e subsistemas; turbinas de vapor e de gas, caldeiras e subsistemas asociados; ciclos combinados; equipos eléctricos, electrónicos, e de regulación e control; as instalacións auxiliares, tales como instalacións frigoríficas, instalacións de aire acondicionado, plantas potabilizadoras, grupos electrógenos, etc.
A93 CE93 - Interpretar especificacións, regulamentos e normas de obrigado cumprimento.
A94 CE94 - Realizar inspeccións, medicións, valoracións, taxacións, peritacións, estudos, informes, planos de labores e certificacións nas instalacións do ámbito da súa especialidade.
A95 CE95 - Coñecer o balance enerxético xeneral, incluíndo o balance termo-eléctrico, así como a xestión eficiente da enerxía respectando o medio ambiente.
A96 CE96 - Realización de auditorías enerxéticas de instalacións marítimas.
A99 CE99 - Ter a capacidade para exercer como Oficial de Máquinas da Mariña Mercante, unha vez superados os requisitos esixidos pola Administración Marítima.
B2 CB2 - Aplicar os coñecementos no seu traballo ou vocación dunha forma profesional e posuír competencias demostrables por medio da elaboración e defensa de argumentos e resolución de problemas dentro da área dos seus estudos
B3 CB3 - Ter a capacidade de reunir e interpretar datos relevantes para emitir xuicios que inclúan unha reflexión sobre temas relevantes de índole social, científica ou ética
B5 CB5 - Ter desenvolvido aquelas habilidades de aprendizaxe necesarias para emprender estudos posteriores con un alto grao de autonomía.
B7 CG02 - Resolver problemas de forma efectiva.
B12 CG07 - Capacidade para interpretar, seleccionar e valorar conceptos adquiridos noutras disciplinas do ámbito mariño, mediante fundamentos físico-matemáticos.
B16 CG11 - Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C3 CT03 - Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C7 CT07 - Desenvolver a capacidade de traballar en equipos interdisciplinares ou transdisciplinares, para ofrecer propostas que contribúan a un desenvolvemento sostible ambiental, económico, político e social.

Learning aims
Learning outcomes Study programme competences
Analysis and synthesis of the theory of heat transfer. Capacity to resolve problems of heat transfer in industrial installations. Critical reasoning of the distinct modes of heat transfer present in the installations of the marine engineering. Identify the typology and elements of steam generators. Planning and making decisions in the design, management and operation of steam generators. Energetic optimization of heat transfer equipment. The following competences included in Table A-III / 1 of the STCW Code as amended by Manila; Function: Marine engineering at operational level -1.1 Maintain a safe engineering watch -1.2 Operate main and auxiliary machinery and associated control systems A1
A2
A5
A6
A8
A9
A73
A74
A78
A87
A89
A90
A93
A94
A95
A96
A99
B2
B3
B5
B7
B12
B16
C3
C7

Contents
Topic Sub-topic
PART I.- INTRODUCTION.

1.- PRESENTATION.
1.1.- IMPORTANCE OF THE HEAT TRANSFER IN STEAM GENERATORS.

2.1.- OBJECTIVES AND RELATION WITH OTHER SUBJECTS AND PROFESSIONAL CAREER.
PART II.- HEAT TRANSFER.

CHAPTER 2.-INTRODUCTION.
1.2.-ENERGY MODES. HEAT. THERMAL AND VOLUMETRICL PROPERTIES.
2.2.- HEAT TRANSFER MODES.
CHAPTER 3.- CONDUCTION HEAT TRANSFER. 1.3.- GENERAL EQUIATION OF CONDUCTION HEAT TRANSFER.
2.3.- ONE DIEMNSIONAL, STADY STATE CONDUCTION WITH NO HEAT GENERATION.

3.3.- ONE DIEMNSIONAL, STADY STATE CONDUCTION WITH HEAT GENERATION.

4.3.- FIN HEAT TRANSFER.

5.3.- MULTIDIMENSIONAL, STADY STATE CONDUCTION. APROXIMATE METHODS.
CHAPTER 4.- CONVECTION HEAT TRANSFER. 1.4.-.KEY CONCEPTS.

2.4.-.DIFFERENTIAL EQUATIONS OF CONSERVATION.

3.4.- FORCED CONVECTION COEFFICIENT.

4.4.- NATURAL CONVECTION COEFFICIENT.

5.4.- CONVECTION WITH PHASE CHANGE. CONDENSATION.

6.4.- CONVECTION WITH PHASE CHANGE. BOILING.
CHAPTER 5.- RADIATION HEAT TRANSFER 1.5.- KEY CONCEPTS.

2.5.- BLACK BODY RADIATION.

3.5.- RADIATION HEAT TRANSFER BETWEEN BLACK SURFACES.

4.5.- DIFFUSE-GRAY SURFACES.

5.5.- RADIATION IN GASES
PART III.- DESCRIPTION OF BOILERS.

CHAPTER 6.- INTRODUCTION.
1.6.- KEY CONCEPTS AND DEFINITIONS.

2.6.- STEAM BOILERS CLASSIFICATION.
CHAPTER 7.- WATER CIRCULATION IN BOILERS. 1.7.- INTRODUCTION.

2.7.- RECIRCULATION BOILERS.

3.7.- FORCED CIRCULATION BOILERS.
CHAPTER 8.- CLASSIFICATION ACCORDING TO THE BOILER DESIGN. 1.8.- CYLINDRICAL.

2.8.- FIRETUBE.

3.8.- WATERTUBE.

4.8.- SPECIAL BOILERS.
CHAPTER 9.- CLASSIFICATION OF FURNACES ACCORDING TO THE USED FUEL 1.9.- CLASSIFICATION.

2.9.- SOLID FUEL FURNACES.

3.9.- LIQUID FUEL FURNACES.

4.9.- GAS FUEL FURNACES.
CHAPTER 10.- WATER-STEAM SYSTEM 1.10.- INTRODUCTION.

2.10.- ECONOMIZER.

3.10.- STEAM DRUM.

4.10.- VAPORIZER WALLS.

5.10.- SUPERHEATER AND REHEATER.

6.10.- SOOTBLOWERS.
CHAPTER 11.- AIR-FLUEGAS SYSTEM. 1.11.- INTRODUCTION.

2.11.- DRAUGHT. FANS AND STACKS.

3.11.- AIR PREHEATER.

4.11.- SOOT REMOVAL SYSTEMS.
CHAPTER 12.- NUCLEAR ENERGY FOR STEAM GENERATION 1.12.- APPLICATIONS.

2.12.- NUCLEAR FUEL.

3.12.- REACTOR.

4.12.- REACTORS FOR STEAM GENERATION.

5.12.- STEAM GENERATORS.
PART IV.- WATER TREATMENT AND COMBUSTION.

CHAPTER 13.- BOILER WATER PROBLEMS.
1.13.- FOAMING AND CARRYOVER.

2.13.- SCALE AND MUD.

3.13.- WATER SIDE CORROSION.
CHAPTER 14.-WATER TREATMENT FOR STEAM GENERATION. 1.14.- CHEMICAL CHARACTERISTICS OF WATER BOILER.
2.14.- EXTERNAL TREATMENT. MAKE-UP AND CONDENSATE.

3.14.- INTERNAL TREATMENT.
CHAPTER 15.- COMBUSTION FUNDAMENTALS. 1.15.- INTRODUCTION.

2.15.- STOICHIOMETRY OF COMBUSTION

3.15.- ANALISYS OF COMBUSTION AND BOILER EFFICIENCY.
The previous topics fulfil with the column 2, "Knowledge, understanding and proficiency", of the Manila amendments to the STCW Code, of the following Table: (see sub-topics)
The competences acquisition established in Column 1 of the respective STCW Table, are completed with the overcoming of the contents included in the following complementary subjects to this one: Internal Combustion Engines. Steam and Gas Turbines. Heat Transfer and Steam Boilers. Maritime Installations and Propulsion. Automatization of Maritime Installations Practical traineeship on board
1.- Table A-III/1 of Specification of minimum standard of competence for officers in charge of an engineering watch in a manned engine-room or designated duty engineers in a periodically unmanned engine-room

Function: Marine engineering at operational level
Competences
-1.1 Maintain a safe engineering watch
-1.2 Operate main and auxiliary machinery and associated control systems
The development and overcoming of these contents, together with those corresponding to other subjects that include the acquisition of specific competencies of the degree, guarantees the knowledge, comprehension and sufficiency of the competencies contained in Table AIII / 2, of the STCW Convention, related to the level of management of First Engineer Officer of the Merchant Navy, on ships without power limitation of the main propulsion machinery and Chief Engineer officer of the Merchant Navy up to a maximum of 3000 kW. Table A-III / 2 of the STCW Convention.
Specification of the minimum standard of competence for Chief Engineer Officers and First Engineer Officers on ships powered by main propulsion machinery of 3000 kW or more.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A2 A6 A8 A9 A78 A87 A90 A93 A94 A95 A96 A99 B2 B3 B5 B7 B12 B16 C3 C7 26 39 65
Objective test A5 A73 A90 A93 A94 A95 A96 A99 B2 B3 B7 B12 B16 6 12 18
Laboratory practice A1 A2 A5 A6 A8 A9 A74 A78 A87 A89 A90 A93 A94 A95 A96 A99 B3 B7 B12 C7 9 9 18
Document analysis A8 A73 A78 A90 A93 A94 A96 A99 B2 B3 B7 B16 C3 0 9.5 9.5
Problem solving A1 A2 A5 A6 A9 A73 A74 A78 A87 A89 A90 A93 A94 A95 A96 A99 B2 B3 B5 B7 B12 B16 C3 C7 13 19.5 32.5
 
Personalized attention 7 0 7
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech There will be a detailed explanation of the contents of the subject which will be distributed on issues. The student will has got a typed copy of the issue to be addressed before each lesson. Class participation will be encouraged through comments that relate the theoretical contents with real life experiences
Objective test About 4 written partial tests will be conducted, including possibility to recover contents from the second test. Each test will consist of a theoretical and practical part, so that both account for 50% of the grade. Ordinary and extraordinary exams have got the same format.
Laboratory practice Practical lessons will be conducted in two laboratories: Machinery and Engines, with a industrial type steam generator; Chemistry, where practices will be made with regard to the analysis and treatment of boiler water. Attendance and delivery of work practices is mandatory for passing the subject
Document analysis Using different literature sources, students will get used to the individual seeking information in order to deepen or focus on learning from other points of view that are not exclusively the professor's lessons. It is a training to future needs of the student in their professional development
Problem solving Proposed collections of exercises for each topic will be solved, allowing the application of mathematical models best suited to each case, including managing tables, applying the most appropriate assumptions, the relation with theoretical contents developed in the lessons and relationship with professional practice

Personalized attention
Methodologies
Problem solving
Laboratory practice
Objective test
Guest lecture / keynote speech
Description
The personalized attention related with the methodologies that contemplate it, aims to encourage maximum interaction with students, in order to optimize their effort and improve their learning.
Through this interaction, together with the other evaluation processes, the degree of learning of the subject competences will be determined, allowing personalized attention to those students who most need it through individualized tutoring, whose convocation will be held in with involved students.
Regardless of the face-to-face tutoring programmed by the teacher, the student can go to tutoring, as many times as he wants, and at a time compatible with teaching, research and management professor activities.
In accordance with the "norma que regula o réxime de dedicación ao estudo dos estudantes de grao na UDC" (Art.3.b e 4.5) and ""normas de avaliación, revisión e reclamación das cualificacións dos estudos de grao e mestrado universitario” (Art. 3 e 8b), students with part-time recognition and academic exemption from attendance exemption may participate in a personalized and flexible system of mentoring and evaluation tutorials in order to determine the degree of competency learning achieved. Regarding with this matter, the tutorials will serve to carry out those activities included within the methodology of objective tests, problems solving and laboratory practice

Assessment
Methodologies Competencies Description Qualification
Problem solving A1 A2 A5 A6 A9 A73 A74 A78 A87 A89 A90 A93 A94 A95 A96 A99 B2 B3 B5 B7 B12 B16 C3 C7 Problem solving attendance not less than 90% of all sessions together with participation through questions or comments on the explained concepts, up to a maximum of 5% of the total grade.
Assessed competencies: A1; A6; A7; A14; A21; A29; B2
5
Laboratory practice A1 A2 A5 A6 A8 A9 A74 A78 A87 A89 A90 A93 A94 A95 A96 A99 B3 B7 B12 C7 Practical lessons attendance and delivery of homeworks associated with them is mandatory. If such assistance does not exceed 90% of all sessions, the student fails the subject regardless of the results of the objective tests.
Assessed competencies: A1; A3; A7; A14; A21; A29; A40; A44; A46; B2; B7; C6
45
Objective test A5 A73 A90 A93 A94 A95 A96 A99 B2 B3 B7 B12 B16 The degree of acquired knowledge about the learning contents is assessed, taking into account both the theoretical part and the problems.
Assessed competencies: A1; A3; A6; A7; A14; A21; A29; A48; A58; B2; B7; C6
45
Guest lecture / keynote speech A1 A2 A6 A8 A9 A78 A87 A90 A93 A94 A95 A96 A99 B2 B3 B5 B7 B12 B16 C3 C7 Lessons attendance not less than 90 %, up to a maximum of 5% of the grade. It also takes into account participation through questions or comments on the explained contents.
Assessed competencies: B2; B7; C6
5
 
Assessment comments

IT IS IMPORTANT TO HIGHLIGHT THAT THE ASSISTANCE TO LABORATORY PRACTICES IS NEEDED TO OVERCOME THE COURSE. ASSISTANCE TO THE DIFFERENT METHODOLOGIES ARE CERTIFIED BY SIGNING OF EACH STUDENT AN ATTENDANCE SHEET PROVIDED EVERY DAY BEFORE THE BEGINNING OF THE SESSION. A final examination to collect all course methodologies and representing 100% of the grade, is planned for those students who do not follow the teaching, as long as they pass mandatory laboratory practices.

The official tests of the first chance (May-June) will collect the different assessment methodologies and must be completed by those students who have not fully passed the continuous assessment. This test will be designed in such a way that the student can deal with the methodologies of problem-solving and objective test, where he has not reached 30% of the total rating.

The students required to attend the official tests of the second chance (June-July) will retain the qualification achieved in all methodologies, except for the one obtained in the objective tests of the first chance, which will be replaced by the 2nd. In the same way, you can only opt for honours if the maximum number of these for the corresponding course is not covered in full at the first chance.
For the students with recognition of part-time dedication and academic exemption of attendance exemption, the qualification obtained in the activities associated with the personalized tutoring system will correspond to the evaluation of the methodology of problem-solving and objective tests, with 30 % and 70 % of total rating, respectively.

Fraudulent performance of the tests or evaluation activities, once verified, will directly imply a failing grade "fail" (numeric mark 0) in the subject and in the corresponding first or second call, besides invalidating any grade obtained in either evaluation activity for the extraordinary call.  For that, the mark in the first chance will be modified if needed.

The assessment system complies with the criteria for assessing competence set out in Column 4 of the following Tables of the STCW Convention as amended by Manila 2010:
1.- Table A-III/1 of Specification of minimum standard of competence for officers in charge of an engineering watch in a manned engine-room or designated duty engineers in a periodically unmanned engine-room
Function: Marine engineering at operational level
Competences 
-1.1 Maintain a safe engineering watch
-1.2 Operate main and auxiliary machinery and associated control systems


Sources of information
Basic Molina, L. A. I. y Alonso. J. M. G. (1996). Calderas de Vapor en la Industria (II). Cadem, Bilbao
Mesny, M. (1976). Generación del Vapor. Marymar, Buenos Aires
Bejan, A. (1993). Heat Transfer. John Wiley & Sons, Nueva York
B Babcock & Wilcox (1992). Steam: Its generation and use. Babcock & Wilcox, USA
Holman, J. P (1998). Transferencia de Calor. McGrawHill

Complementary (). .
Kakaç, S. (1991). Boilers, Evaporators and Condensers. John Wiley & Sons, Nueva York
Port, R. D. y Herro, H. M.: (1997). Guía Nalco para el Análisis de Fallas en Calderas. McGraw-Hill, México
Chapman, A. J. (1990). Transmisión del Calor. Bellisco, Madrid
Germain, L et al. (1982). Tratamiento de las Aguas. Omega, Barcelona


Recommendations
Subjects that it is recommended to have taken before
Thermodynamics and Engineering Thermodynamics/631G02254

Subjects that are recommended to be taken simultaneously
Maritime Installations II/631G02359
Steam and Gas Turbines/631G02352
Thermal Marine Machinery/631G02361

Subjects that continue the syllabus
Energy Techniques Applied to Ship/631G02453
/

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.