Identifying Data 2024/25
Subject (*) Electronics Technology Code 614G01005
Study programme
Grao en Enxeñaría Informática
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
First Basic training 6
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Enxeñaría de Computadores
Coordinador
García Naya, José Antonio
E-mail
jose.garcia.naya@udc.es
Lecturers
Bregains Rodriguez, Julio Claudio
Castro Castro, Paula Maria
García Naya, José Antonio
Gonzalez Lopez, Miguel
Iglesia Iglesias, Daniel Ismael
Lamas Seco, Jose Juan
Rodas González, Javier
E-mail
julio.bregains@udc.es
paula.castro@udc.es
jose.garcia.naya@udc.es
miguel.gonzalez.lopez@udc.es
daniel.iglesia@udc.es
jose.juan.lamas.seco@udc.es
javier.rodas@udc.es
Web http://estudos.udc.es/es/subject/614G01V01/614G01005/
General description A materia de Tecnoloxía Electrónica no Grao en Enxeñaría Informática é fundamental tanto para a titulación como para a carreira profesional en enxeñaría informática. Neste curso, o alumnado explorará os principios físicos dos semicondutores, os circuítos lóxicos e a tecnoloxía detrás dos dispositivos electrónicos. Este coñecemento é esencial para comprender e deseñar circuítos electrónicos, o que é crucial na creación de todo tipo de sistemas informáticos. A importancia desta materia reflíctese na súa aplicación en áreas punteiras como o Internet das Cousas (IoT), os dispositivos móbiles, as comunicacións e a ciberseguridade, por citar algúns. As persoas tituladas que conten cunha sólida base en tecnoloxía electrónica estarán mellor preparadas para innovar e desenvolver novas solucións tecnolóxicas, facendo fronte aos desafíos actuais e futuros na industria. Esta materia non só proporciona unha base teórica sólida, senón que tamén ofrece oportunidades para aplicar estes coñecementos en proxectos prácticos, preparando ao alumnado para desempeñar un papel crucial no avance tecnolóxico.

Competencies / Study results
Code Study programme competences / results
A2 Comprensión e dominio dos conceptos básicos de campos e ondas, e electromagnetismo, teoría de circuítos eléctricos, circuítos electrónicos, principio físico dos semicondutores e familias lóxicas, dispositivos electrónicos e fotónicos e a súa aplicación para a resolución de problemas propios da enxeñaría.
B1 Capacidade de resolución de problemas
B3 Capacidade de análise e síntese
C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.

Learning aims
Learning outcomes Study programme competences / results
To learn fundamental physical concepts governing computer functioning: electrical and electronic circuits. A2
B1
B3
C2
C6
Practical applications of the solid-state devices and analog and digital integrated circuits. A2
B1
B3
C2
C6

Contents
Topic Sub-topic
Chapter 1. Electric circuits 1.1 Basic concepts of electricity. Ohm's law.
1.2 Voltage and current sources. Power.
1.3 Electrical circuits. Kirchhoff's laws.
1.4 Circuits theorems.
Chapter 2. Charging and discharging capacitors. Amplifiers 2.1 Waveforms. Fundamental parameters.
2.2 Behavior of the capacitor parameters with respect to time.
2.3 R-C circuits in the time domain.
2.4 R-C Integrator and differentiator circuits.
2.5 Foundations of amplifiers
Chapter 3. Semiconductor diodes 3.1 Physical principles of semiconductor devices.
3.2 p-n junction.
3.3 Diode V-I characteristic. Linear models.
3.4 Avalanche diodes. LED. Photodiodes.
Chapter 4. Transistors
4.1 MOSFET unipolar transistors.
4.2 V-I characteristic in common-source mode.
4.3 Operational regions and linear equivalent models.
4.4 MOSFET transistors in amplifying and switching modes.
Chapter 5. Logic circuits
5.1 Introduction. General properties of digital circuits.
5.2 The CMOS inverter.
5.3 CMOS gates.
5.4 CMOS families.

Planning
Methodologies / tests Competencies / Results Teaching hours (in-person & virtual) Student’s personal work hours Total hours
Guest lecture / keynote speech A2 B1 B3 C2 C6 30 42 72
Laboratory practice A2 B1 B3 C2 C6 20 30 50
Problem solving A2 B1 B3 C2 C6 10 14 24
Mixed objective/subjective test A2 B1 B3 C2 C6 3 0 3
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech In the lecture sessions, theoretical content will be presented through oral presentations supported by audiovisual media and a blackboard. Additionally, numerous examples will be used, and practical problems will be solved. This methodology includes introducing questions directed at students to promote learning and knowledge construction.
Laboratory practice In the laboratory practices, students will engage in practical activities focused on circuit analysis. They will use electronic boards, instrumentation equipment, and measurement and circuit simulation software. This methodology allows students to apply theoretical concepts in a practical environment, facilitating deeper learning and a comprehensive understanding of electronic systems.
Problem solving Students will actively participate in solving problems specific to electronic technology, which will be related to the practical cases addressed in the laboratory. These problems will focus on the analysis of electrical and electronic circuits, as well as understanding the operation of basic electronic circuits, including logic gates. Additionally, students will tackle exercises designed to reinforce their understanding of fundamental concepts.
Mixed objective/subjective test The mixed exam will be a final evaluative activity in which students must demonstrate their knowledge through a combination of theoretical questions and problem-solving. This written exam will allow for a comprehensive and integrated treatment of the knowledge acquired throughout the course.

Personalized attention
Methodologies
Guest lecture / keynote speech
Laboratory practice
Problem solving
Description
Personalized attention will be applied to the three teaching methodologies: lecture sessions, laboratory practices, and problem solving. This attention will involve guiding and mentoring the learning process in various activities, aiming to help students significantly understand the information, integrate it into their knowledge structure, and engage actively. Additionally, it seeks to motivate students and encourage their active participation in the teaching-learning process.

Assessment
Methodologies Competencies / Results Description Qualification
Laboratory practice A2 B1 B3 C2 C6 Continuous assessment, with feedback from the teaching staff, of the work carried out by students in laboratory practices. 30
Problem solving A2 B1 B3 C2 C6 Continuous assessment, with feedback from the teaching staff, of the work carried out by students in the problem-solving sessions. 20
Mixed objective/subjective test A2 B1 B3 C2 C6 The mixed exam will consist of providing written answers to a combination of theoretical questions and problem-solving tasks. It will be held on the dates set in the faculty's exam schedule. 50
 
Assessment comments

First opportunity

Students who do not take the mixed exam will be graded as "not presented."

The total grade (0 to 10 points) is obtained from the sum of the laboratory practices (0 to 3 points), problem-solving (0 to 2 points), and the mixed exam (0 to 5 points).

To pass the subject, the following two conditions must be met:

1) The total grade is greater than or equal to 50% (5 points of the total grade).

2) The grade of the mixed exam is greater than or equal to 15% (3 points out of 10 of the mixed exam grade). Otherwise, the total grade will be halved.

Second opportunity

Only the mixed exam will be assessed on the date indicated in the faculty's exam schedule. The conditions for grading as "not presented" and for passing the course are the same as in the first opportunity.

Early opportunity

Same conditions as in the case of the second opportunity.


Sources of information
Basic (). .
  1. Nahvi, Mahmood, and Joseph A. Edminister. Circuitos eléctricos y electrónicos. 4a ed., McGraw-Hill, 2005. [URL]
  2. Hambley, Allan R. Electronica. 2a ed., Prentice-Hall, 2008. [URL]
Complementary
  1. Brégains, Julio Claudio, and Paula María Castro Castro. Electricidad básica: problemas resueltos. Starbook, 2012. [URL]
  2. Brégains, Julio Claudio, and Paula María Castro Castro. Electrónica básica: problemas resueltos. Starbook, 2013. [URL]
  3. Boylestad, Robert L. Introducción al análisis de circuitos. 13a ed., Pearson, 2017. [URL]
  4. Scott, Donald E. Introducción al análisis de circuitos: un enfoque sistemático. McGraw-Hill, 1988. [URL]
  5. Sedra, Adel S., and Kenneth C. Smith. Circuitos microelectrónicos. 5a ed., McGraw Hill, 2006. [URL]
  6. Malvino, Albert Paul, and David J. Bates. Principios de electrónica. 7a ed., McGraw-Hill, 2007. [URL]
  7. Boylestad, Robert L., and Louis Nashelsky. Electrónica: teoría de circuitos y dispositivos electrónicos. 10a ed., Prentice Hall, 2009. [URL] 
  8. Boylestad, Robert L., et al. Electrónica: teoría de circuitos y dispositivos electrónicos. 11a ed., Pearson Educación, 2018. [URL]
  9. Malik, Norbert R. Circuitos electrónicos: análisis, simulación y diseño. Prentice Hall, 1996. [URL]
  10. Rashid, Muhammad H. Circuitos microelectrónicos: análisis y diseño. Paraninfo, 2002. [URL]

Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.