Identifying Data 2024/25
Subject (*) Fundamentals of Quantum Theory Code 610G04015
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Second Obligatory 6
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Química
Coordinador
Garcia Dopico, Maria Victoria
E-mail
victoria.gdopico@udc.es
Lecturers
Fernandez Perez, Maria Isabel
Garcia Dopico, Maria Victoria
E-mail
isabel.fernandez.perez@udc.es
victoria.gdopico@udc.es
Web http://https://campusvirtual.udc.gal/course/view.php?id=15391
General description A química é unha disciplina que se encarga de estudar a materia, as súas propiedades, transformacións e a súa interacción coa radiación electromagnética e, este estudo implica ser capaz de describir o comportamento dos elementos básicos que compoñen a materia (electróns e núcleos atómicos) a nivel microscópico. E é ao que nos dedicaremos neste tema, a descubrir as leis da mecánica que nos permiten explicar o comportamento das partículas microscópicas, xa que non obedecen ás leis da física clásica senón á mecánica cuántica pouco intuitiva.
É esencial saber aplicar rigorosamente os seus principios para derivar as leis que rexen a materia, a súa estrutura, os tipos de enlaces e as súas transformacións e ver como teñen importantes consecuencias a nivel macroscópico. Unha vez que coñezamos as bases da mecánica cuántica, introduciremos os fundamentos da mecánica estatística que serve de ponte para calcular as propiedades macroscópicas da materia empregando a mecánica cuántica.
Todos os conceptos destas novas mecánicas aplicaranse para simular e analizar as propiedades da materia a escala nanoscópica.

Competencies / Study results
Code Study programme competences / results
A1 CE1 - Comprender los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
A2 CE2 - Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
B1 CB1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
B2 CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4 CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B5 CB5 - Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
B9 CG4 - Trabajar de forma autónoma con iniciativa.
B11 CG6 - Comportarse con ética y responsabilidad social como ciudadano/a y como profesional.
B12 CG7 - Comunicarse de manera efectiva en un entorno de trabajo.
C1 CT1 - Expresarse correctamente, tanto de forma oral coma escrita, en las lenguas oficiales de la comunidad autónoma
C2 CT2 - Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C4 CT4 - Desarrollarse para el ejercicio de una ciudadanía respetuosa con la cultura democrática, los derechos humanos y la perspectiva de género
C7 CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a un desarrollo sostenible ambiental, económico, político y social.
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad
C9 CT9 - Tener la capacidad de gestionar tiempos y recursos: desarrollar planes, priorizar actividades, identificar las críticas, establecer plazos y cumplirlos

Learning aims
Learning outcomes Study programme competences / results
Know the principles of quantum mechanics A1
A2
A3
A7
B2
B6
B8
B9
B11
C1
C2
C3
Know the principles of statistical mechanics A1
A2
A3
A7
B1
C2
Apply the theoretical contents acquired to the explanation of experimental phenomena A1
A2
A3
A7
B1
B2
B3
B4
B6
B7
B8
C1
C2
C3
C8
Know how to apply the principles of quantum mechanics to describe the structure and properties of atoms and molecules. A1
A2
A3
A7
B1
B2
B3
B4
B5
C2
C3
C7
C9
Skills in the management and search of bibliography related to the contents of the subject. A1
A2
A3
A7
B1
B2
B9
B12
C1
C2
C4
C8

Contents
Topic Sub-topic
1.- Introduction to Quantum Mechanics: Postulates - Historical background
- Postulates of Quantum Mechanics
- Time-independent Schröndinger equation
- Importance of the postulates: principle of correspondence and uncertainty and superposition of states.
- Potential wells. Confinement and quantization
2.- Study of the translational movement of particles confined in potential wells - Free particle.
- The particle in a one-dimensional box: Wave functions and energy levels.
- The particle in a two- and three-dimensional box: Separation of variables and degeneration.
- Tunnel effect.
- Applications of the particle in a box. Quantum wells, quantum wires and quantum dots
- The free particle
- One-dimensional potential well: particle-in-a-box model. Wave functions and energy levels.
- Two- and three-dimensional potential wells. Separation of variables and degeneration.
- Study of other potential wells
- Tunnel Effect
3.- Study of vibrational motion - Harmonic oscillator model for the study of vibration movement
- Application of the oscillator model for the study of vibration of molecules: wave functions. Vibrational energy levels. Anharmonicity.
- Applications of the harmonic oscillator model for the study of the thermal conductivity of solids: phonons
- Movement of particles in parabolic potential wells of different dimensions. Electronic levels.
4.- Study of rotational motion -Angular moment in classical mechanics
-Angular momentum in quantum mechanics
-Study of the rotational movement of particles confined in circular, cylindrical and spherical spaces: particle models in a ring, in a disk and in a sphere. Electronic levels
-Study of the rotational movement of molecules: rigid rotor model. Rotation energy: rotational levels. Spherical harmonics.
- Quantification of angular momentum.
5.- Hydrogenoid atoms - Resolution of the Schrodinger equation for the hydrogen atom or ion.
- Radial and angular wave functions.
- Energy levels.
- Atomic orbital.
- Radial distribution function.
- Real wave functions: radial and angular representation.
- Zeeman effect.
6.- Approximation methods - Schrondinger equation solving in systems of chemical interest.
- Perturbation method.
- Method of variations: variational theorem.
- Linear variational functions: secular equations.
- Applications of approximate methods to quantum chemistry
7.- Multielectron atoms - Study of the helium atom.
- Slater orbitals.
- Hartrree–Fock self-consistent field method.
- Spin angular momentum.
- Antisymmetry: Pauli's exclusion principle.
- Periodic Table.
- Electronic configuration, terms and levels
- Total orbital angular momentum: spin-orbit and jj couplings
- Hund's rules.
- Atomic spectroscopy. Atomic terms.
8.- Chemical bond. Introduction to the study of molecules. - The molecular Hamiltonian
- Born-Oppenheimer approximation.
- Molecular orbital theory and valence bond theory.
- Application of the molecular orbital method to the hydrogen molecule ion.
- Molecular orbitals: bonding and antibonding.
- Homonuclear diatomic molecules.
- Heteronuclear diatomic molecules.
- Polar bond: electronegativity
- Molecular terms
- Potencial energy surfaces
9.- Fundamentals of Statistical Mechanics. - Fundamentos del método mecano-estadístico.
- Postulados de la termodinámica estadística.
- Tipos de estadísticas
- Estudio termodinámico estadístico de gases ideales.
- Interpretación estadística de las propiedades termodinámicas de los sólidos.
11.- Semiempirical methods. - Ab initio and semiempirical methods.
- OM method for polyatomic molecules: approx. directed valence. – Hybrid orbitals
- Hartree-Fock method for molecules.
- OM theory applied to conjugated and aromatic molecules: Hückel approximation.
- Band Theory
- Beyond the Hartree-FocK approximation: post-HF methods
- Introduction to computational chemistry: Configuration interaction methods and density functional methods



10.- Efectos cuánticos en nanoestructuras -Macroestructuras vs nanoestructuras metálicas
- Aplicación de la mecánica cuántica al estudio de la conductividad de sólidos metálicos macroscópicos: modelo del electrón libre en un potencial periódico. Teoria de bandas: funciones de Bloch y teorema de Bloch.
- Aplicación de la termodinámica estadística al estudio de la conductividad de sólidos metálicos macroscópicos: La función de Fermi. Densidad de estados y ocupación. Energía de Fermi,
- Estudio de la cuantización en sistemas nanoscópicos: pozos cuánticos, cables cuánticos, pozos cuánticos y otras nanoestructuras más complejas. Aplicaciones en dispositivos electrónicos.

Planning
Methodologies / tests Competencies / Results Teaching hours (in-person & virtual) Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A2 B1 B6 B9 C2 C3 32 50 82
Seminar A1 A2 A3 A7 B1 B2 B3 B5 B7 B8 B9 C2 C3 16 31 47
Supervised projects A1 A2 A3 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 B11 B12 C1 C2 C3 C4 C7 C8 C9 0 12 12
Multiple-choice questions A2 A7 B1 B2 B5 B7 B8 B9 0 5 5
Mixed objective/subjective test A1 A2 A3 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 B12 C1 C2 C3 3 0 3
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech • Approximate duration of one hour and will be taught at the time approved by the board of the center.
• The classes will be of master class type in which the teacher will expose the topics of the subject with the support of the necessary audiovisual means, indicating to the students the most important contents to take into account when studying and recommend chapters of books suitable for a greater understanding.
• The teacher will facilitate the access of the students to all the audiovisual material used in the classes, as well as to other type of complementary material, in a way that helps them in their learning. Access to these materials will be through the Virtual Campus of the University.
Seminar • Activity to be developed in small groups, where questions and problems related to the contents of the subject will be solved, with the support and direct supervision of the teacher.
• Practical cases will be raised or doubts will be resolved.
Supervised projects • Group activities that aim to promote autonomous learning of students, under the supervision of the teacher.
• Activities related to content of interest of the subject will be proposed.

Green Campus Program - Faculty of Science.
To help achieve an immediate sustainable contour of the work carried out in this area:
a. They will be requested mainly in virtual format and computer support.
b. If done on paper:
- Plastics will not be used.
- Recycled paper will be used.
- Drafts will be avoided.
Multiple-choice questions • During the course, several very short multiple choice tests (maximum 10 questions) will be carried out, using the virtual campus, every time a topic is finished, in order to encourage students to study the subject daily and encourage continuous evaluation.
Mixed objective/subjective test • Final exam of up to 3-4 hours that will consist of short questions, test questions and problems. The learning associated with all the contents developed in the subject will be evaluated.

Personalized attention
Methodologies
Supervised projects
Description
• The doubts that the student may have regarding the theory taught in the master classes, in problem solving, will be resolved.
• The student will also be oriented, personally, in the study strategy of the subject.
• The tutorials, in group or personal, will be carried out in the office of the teachers or through the TEAMS application. They can also be done using the virtual campus and / or email.
• In the case of supervised works, each group of students must arrange a face-to-face tutoring with the teachers to discuss the proposed non-face-to-face activity.





Assessment
Methodologies Competencies / Results Description Qualification
Supervised projects A1 A2 A3 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 B11 B12 C1 C2 C3 C4 C7 C8 C9 • Group activities that aim to promote autonomous learning of students, under the supervision of the teacher.
• Activities related to the contents of interest of the subject will be proposed.
•Groups will have a maximum capacity of 4 people

• The work involves:
o Oral presentation where it will be evaluated:
1.- Quality of the information contained in the presentation.
2.- Skills shown in the presentation, communication skills.
3.- Ability to defend the topic presented: objective, ideas, development and arguments.
4.- Presentation: clarity in the presentation, adequate vocabulary and care of spelling
5.- Answer/defense of the silver questions asked during the exhibition
o Report of the work that includes the critical analysis of the results
10
Mixed objective/subjective test A1 A2 A3 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 B12 C1 C2 C3 Final exam with two parts. One, the theoretical one (50%) which includes multiple choice questions, short answer and/or essay type, and, second, the numerical problems part (50%). 80
Multiple-choice questions A2 A7 B1 B2 B5 B7 B8 B9 Realización de varias probas curtas dun máximo de 7 preguntas cada unha. As preguntas poden ser de varios tipos: resposta múltiple, verdadeiro/falso, completar frases, etc. Realizaranse durante as clases maxistrais, ao día seguinte ou dos días despois de rematar un tema,
Realizaránse únicamente de forma presencial, durante as sesións maxistrais, mediante a plataforma udconline. Solo os alumnos presentes na sesion maxistral poderán acceder a realización da proba. Aquelos que accedan desde fóra de aula se lles aplicará a normativa correspondente de plaxio e fraude
10
 
Assessment comments
  • · Requirements to pass the subject:
  • - To pass the subject it is necessary to obtain a minimum grade of 4 (out of a maximum of 10) in each of the parts of the mixed test. 
  • - If the minimum grade of 4 is not reached in the previous tests, the subject will be failed, even if the average of the grades obtained with the different methodologies is greater than 5 (out of a maximum of 10). In this case the final grade awarded will be 4 (out of 10).
  • · Qualification "Not presented":
  • · Any student who performs evaluable activities will be considered presented as long as it represents more than forty percent of the overall grade.
  • · Second opportunity:
  • - The second opportunity in July is understood as a second opportunity to take the final mixed test. Consequently, the grades obtained from tutored work and multiple-choice tests are maintained, while the grade from the mixed test of the second opportunity will replace that obtained in the mixed test from the first opportunity. That is, on the second opportunity it is not possible to re-evaluate the supervised work or the multiple-choice tests.
December extraordinary call
- It is an opportunity to take the final mixed test. Consequently, the grades obtained from the previous year's evaluations are maintained, except for the final mixed test, whose grade will be replaced by the one obtained in this call. In other words, in the December call it is not possible to re-evaluate any other evaluable activity other than the mixed test.
Successive academic years: The teaching-learning process, including evaluation, refers to one academic year, and therefore starts again from scratch with the new course, that is, none of the grades obtained during an academic year are maintained for the following. 
Honors registration: In the event that there are several students, with identical numerical qualifications, who can opt for honors registration, they will be called to a written test as long as the number of registrations for which they can opt is less than the of students in said said situation. It should be noted that in the second opportunity you will be able to opt for honors registration if the maximum number of these is not fully covered in the first opportunity.
Students with recognition of part-time admission and academic exemption from attendance exemption: It is necessary for the students to inform the teaching staff or at the beginning of the course of their situation. 
Plagiarism and fraud in the performance of tasks and/or tests
All aspects related to "academic exemption", "dedication to study", "permanence" and "academic fraud" will be reviewed in accordance with the current academic regulations of the UDC.
· During objective and mixed tests, on either occasion, unless otherwise indicated, the use of any device with Internet access is prohibited. Although it is not advisable to bring these devices to this activity, a space may be enabled for their storage, without implying any type of responsibility on the part of the UDC, the Faculty or the professors present during the objective test. If during the objective test, there are indications of the use of these devices, the student will be automatically expelled from the classroom, the objective test will be graded as failed and the center management will be informed in writing as established by the corresponding regulations.




Sources of information
Basic
  • ·       ENGEL, T; REID, P. (2006). QUÍMICA FÍSICA. Pearson Addison Wesley
  • ·       ENGEL, T REID,P. (2019). PHYSICAL CHEMISTRY, QUANTUM CHEMISTRY AND SPECTROSCOPY. Pearson Education
  • ·       ATKINS, P.W. (2008). QUÍMICA FÍSICA. Panamericana
  • ·       ATKINS, P.W., JULIO DE PAULA, JAMES KEELER (2018). PHYSICAL CHEMISTRY. Oxford University Press
  • ·       McQUARRIE (1997). PHYSICAL CHEMISTRY. University Science Books
  • ·       Vladimir V. Mitin, Dmitry I. Sementsov, Nizami Z. Vagidov, (2010) Quantum Mechanics for Nanostructures, Cambrige University Press
  • ·       P. W. Atkins, R. Friedman, Molecular Quantum Mechanics, 5th Ed., Oxford, 2010
Complementary
  • · LOWE (2006). QUANTUM CHEMISTRY 3ª Ed.. Elsevier
  • · RAFF, L.M. (2001). PRINCIPLES OF PHYSICAL CHEMISTRY. Prentice Hall
  • · HERNANDO, J. M. (1974). PROBLEMAS DE QUÍMICA FÍSICA. Gráficas Andrés Martín
  • · McQUARRIE (2008). QUANTUM CHEMISTRY. University Science Books
  • · LEVINE, I.N. (2001). QUIMICA CUÁNTICA 5ª ed. Prentice Hall
  • · LEVINE, I.N. (2004). FISICOQUÍIMICA 5ª edición. McGraw-Hill
  • · James R. Chelikowsky, (2019) Introductory Quantum Mechanims with MatLab, Wiley
  • · Cruz, Chamizo, Garritz, (1987), Estructura atómica, Addisson Wesley iberoamericana

Recommendations
Subjects that it is recommended to have taken before
Physics: Electricity and Magnetism/610G04007
Fundamentals of Mathematics/610G04001
Advanced Calculus /610G04009
Chemistry: Structure and Bonding/610G04005
Physics: Mechanics and Waves/610G04002

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Computational Nanoscience and Nanotechnology/610G04034
Quantum Computing/610G04035
Solid State/610G04022
Spectroscopy/610G04017

Other comments
Recoméndase o/a estudiante repasa-los conceptos teóricos introducidos nas clases de teoría mediante a resolución de cuestións e exercicios propostos que figuran o final de cada tema nos libros recomendados.

Desaconséllase estudiar ÚNICAMENTE polos apuntes de clase que NUNCA deben substituir á consulta de cualquera dos libros recomendados.

Pode resultar moi ÚTIL empregar as horas de titoría para clarexar as dúbidas e profundizar nos coñecementos asociados á asignatura. 
Programa Green Campus - Facultade de Ciencias

Para axudar a conseguir un esquema sostible inmediato os traballos / documentos /exames que se realizan nesta materia:
a. Solicitaranse principalmente en formato virtual e soporte informático.
b. Se se fai en papel:
- Non se utilizarán plásticos.
- Empregarase papel reciclado.
- Evitarase a realización de borradores.


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.