Datos Identificativos 2024/25
Asignatura (*) Matemática Discreta Código 614G03003
Titulación
Descriptores Ciclo Período Curso Tipo Créditos
Grao 1º cuadrimestre
Primeiro Formación básica 6
Idioma
Castelán
Modalidade docente Presencial
Prerrequisitos
Departamento Ciencias da Computación e Tecnoloxías da Información
Coordinación
Aguado Martin, Maria Felicidad
Correo electrónico
felicidad.aguado@udc.es
Profesorado
Aguado Martin, Maria Felicidad
Muñiz Castro, Brais
Perez Vega, Gilberto
Vidal Martin, Concepcion
Correo electrónico
felicidad.aguado@udc.es
brais.mcastro@udc.es
gilberto.pvega@udc.es
concepcion.vidalm@udc.es
Web
Descrición xeral La asignatura Matemática Discreta se imparte en el primer cuatrimestre del primer curso del Grado en Inteligencia Artificial y pertenece al módulo de Formación Básica, dentro de la materia Matemáticas.

La matemática discreta, en su doble vertiente abstracta e instrumental, es hoy una parte sustancial del bagaje teórico-práctico de conocimientos matemáticos de los futuros profesionales de cualquier ámbito tecnológico, en particular el de la inteligencia artificial. La vertiente abstracta se nutre de las fuentes del álgebra abstracta aplicada, y en la parte instrumental hace uso de los aspectos procedimentales y algorítmicos de aquella en su relación con el mundo real.

Con esta asignatura se pretende contribuir a la formación integral del alumnado, posibilitándoles una sólida y adecuada formación en competencias propias de la matemática discreta, potenciando el uso de distintas representaciones (simbólica, gráfica, matricial) y de distintos razonamientos (inductivo, recursivo, deductivo) como medios para favorecer la integración de conceptos y procedimientos derivados de los contenidos propios de la asignatura; y, finalmente, alentando las actitudes de crítica, perseverancia y esfuerzo.

Los conceptos aquí estudiados son básicos para el desarrollo de otras materias, y figura dentro de los Requisitos previos recomendados de las asignaturas Programación II, Lógica, Adquisición y procesamiento de señal, Algoritmos, Bases de datos y Optimización matemática.

Competencias / Resultados do título
Código Competencias / Resultados do título

Resultados de aprendizaxe
Resultados de aprendizaxe Competencias / Resultados do título
Conocer los conceptos básicos de la teoría de conjuntos y aplicaciones. A1
B9
Comprender los conceptos fundamentales de la teoría de grafos y sus aplicaciones. A1
A2
B5
B7
C3
Comprender y saber aplicar las distintas técnicas de conteo. A1
A2
B5
B9
C3
Comprender el concepto de recursión y saber aplicar los algoritmos de resolución de algunas relaciones de recurencia A2
B5
B9
Adquirir las nociones básicas de la aritmética modular y sus aplicaciones a la criptografía. A1
A2
B2
B3
C3
Conocer el concepto de Álgebra de Boole y sus propiedades y aplicarlas para simplificar expresiones booleanas. A1
A2
B2
Saber realizar razonamientos, deducciones y demostraciones rigurosas B5
B7
B9

Contidos
Temas Subtemas
1. Introducción a la teoría de conjuntos Noción intuitiva de conjunto. Subconjuntos. Operaciones con conjuntos: propiedades. Producto cartesiano de conjuntos. Definición de aplicación, tipos de aplicaciones. Composición de aplicaciones, aplicación inversa.
2. Grafos Conceptos básicos y terminología de grafos. Matriz de adyacencia y conexión. Tipos de grafos. Árboles.
3. Combinatoria Principios básicos de conteo. Variaciones y combinaciones. Coeficientes binomiales y multinomiales. Principio de inclusión-exclusión.
4. Recurrencia Sucesiones. Inducción matemática. Definiciones recursivas. Relaciones de recurrencia. Resolución de relaciones de recurrencia lineales. Inducción estructural.
5. Teoría elemental de números y algoritmos Divisibilidad en Z. Algoritmo de Euclides. Números primos. Congruencias. Introducción a la criptografía. Criptografía de clave pública.
6. Álgebras de Boole Álgebras de Boole. Funciones booleanas. Forma normal disyuntiva y forma normal conjuntiva. Minimización de funciones booleanas: Diagramas de Karnaugh.

Planificación
Metodoloxías / probas Competencias / Resultados Horas lectivas (presenciais e virtuais) Horas traballo autónomo Horas totais
Sesión maxistral A1 A2 B5 B7 C3 30 45 75
Prácticas de laboratorio A1 A2 B2 B9 C3 20 30 50
Seminario B2 B3 C3 8 12 20
Proba obxectiva A1 A2 B5 B7 C3 3 0 3
 
Atención personalizada 2 0 2
 
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado

Metodoloxías
Metodoloxías Descrición
Sesión maxistral A través de la plataforma virtual de la universidad, se pondrá a disposición del alumnado la información detallada de los contenidos de cada tema con el fin de que cada alumno/a configure, según su criterio y necesidades, el material adecuado para el seguimiento y comprensión de la materia; podrá hacer uso de la bibliografía recomendada y/o material disponible en la red.

Las clases teóricas y prácticas se irán desarrollando de forma simultánea en el aula, realizando ejercicios después de las explicaciones teóricas. Se iniciará la explicación de las técnicas formales por medio de ejemplos, poniendo énfasis en cálculos concretos y en la naturaleza algorítmica de algunas de ellas. Se pretende que el alumnado sea capaz de obtener conclusiones de los resultados obtenidos, intentando motivar al alumnado para que participe y sea capaz de inferir conclusiones.
Prácticas de laboratorio Al inicio de cada tema se le facilitará al alumnado un boletín de ejercicios relacionados con los contenidos explicados en las clases de teoría.

En estas sesiones se pretende:

i) incentivar al alumnado mediante la resolución de ejercicios, con la ayuda del profesor, para reforzar la comprensión de los conceptos estudiados,
ii) fomentar la resolución razonada de los ejercicios, evitando la utilización de “recetas”,
iii) potenciar la capacidad de abstracción, el razonamiento lógico y la identificación de errores en los procedimientos.


Dependiendo del tema y de los recursos disponibles, se podrán plantear trabajos que refuercen los conceptos tratados en las clases teóricas y de ejercicios.
Seminario En las horas de tutorías se podrán plantear dudas sobre los conceptos, ejercicios y procedimientos vistos en las sesiones de teoría y problemas.
Proba obxectiva Habrá un cuestionario a través de Moodle y un examen escrito.

La prueba de Moodle constará de cuestiones de tipo teórico y problemas similares a los hechos en el aula. Abordará los contenidos y resultados del temario vistos hasta ese momento del curso. La prueba se hará en el aula con la presencia del profesorado de la materia.

El examen final será escrito y consistirá en una serie de preguntas teóricas y/o problemas (del mismo tipo que los propuestos en los seminarios y en los boletines de ejercicios).

Atención personalizada
Metodoloxías
Prácticas de laboratorio
Descrición
En las sesiones en grupos reducidos, se resuelven las dudas planteadas por el alumnado, en especial cuando sean comunes a varios o ilustren un caso interesante. Si la cuestión es más particular o no queda plenamente resuelta para algún estudiante, se trataría en las horas de tutoría individualizada.

El alumnado podrá revisar todas las pruebas realizadas a lo largo del curso con el fin de:
- Conocer las respuestas correctas y ser consciente de los errores cometidos
- Comprobar que la calificación obtenida se ajusta a los criterios de evaluación establecidos.

Avaliación
Metodoloxías Competencias / Resultados Descrición Cualificación
Proba obxectiva A1 A2 B5 B7 C3 A lo largo del cuatrimestre, se hará una prueba mediante la plataforma Moodle. Abordará los contenidos y resultados del temario vistos hasta ese momento del curso. El resultado de este cuestionario contribuirá, como máximo, en un 20% a la calificación total.

En las fechas que establezca la Junta de Facultad en su programación anual, el alumno realizará una prueba escrita. Para superar la asignatura será necesario que la nota de este examen sea al menos de 4 puntos (sobre un máximo de 10 puntos). Esta prueba incluirá:
- Preguntas cortas que permiten valorar si el/la alumno/a comprendió los conceptos teóricos básicos.
- Problemas con un grado de dificultad similar a los realizados en clase y los presentados en las colecciones de ejercicios propuestos.

Se valorarán el dominio de los conceptos teóricos de la materia, su comprensión y su aplicación en la resolución de ejercicios. Asimismo, se evaluará la claridad, la orden y la presentación de los resultados expuestos.

El cálculo de la nota final de la materia se detalla en el apartado de Observaciones evaluación.
70
Prácticas de laboratorio A1 A2 B2 B9 C3 A lo largo del curso se realizarán pruebas sobre algunos temas de la asignatura, en estas pruebas se plantearán cuestiones y ejercicios similares a los de los correspondientes boletines. Se valorará la respuesta correcta a las cuestiones y ejercicios planteados, así como la presentación, el rigor y la claridad de la exposición realizada.

Se podrá tener en cuenta la actitud participativa del alumnado en la resolución de las cuestiones planteadas durante las prácticas.
30
 
Observacións avaliación

Cálculo de la nota final de la materia

La calificación de las pruebas de laboratoriono no se podrá recuperar.

Sin embargo, la nota obtenida el día del examen final se re-escalará de forma que el alumno tenga la oportunidad de recuperar el 20% de la calificación correspondiente a la prueba de Moodle.

Si denotamos por P la calificación de las prácticas (entre 0 y 3 puntos), M la nota obtenida en la prueba de Moodle (entre 0 y 2 puntos) y E la puntuación del examen final (entre 0 y 10 puntos), hallamos el valor de N según la fórmula siguiente:

N = P + M + 0'1 * (7-M) * E

Para el cálculo de la nota final, distinguiremos dos casos:

  • Si el valor de E es mayor o igual que 4, la calificación final (F) será el valor de N.

  • Si el valor de E es menor que 4, la calificación final (F) será el valor mínimo entre N y 4,5.   

La presentación a la prueba final del curso supone que el/la alumno/a completó el proceso de evaluación continua.

Para el alumnado que se presente a la segunda oportunidad, el cálculo de la nota final (F) se realizará de la misma manera que en la primera substituyendo el valor previo de E por el obtenido en la nueva prueba escrita que tendrá lugar en la fecha oficial determinada por la Junta de Facultad.

En cualquiera de las dos oportunidades, para superar la materia, el valor de F ha de ser mayor o igual que 5.

Observación importante:

Todos los aspectos relacionados con dispensa académica”, “dedicación al estudio”, “permanencia” y “fraude académico" se regirán de acuerdo a la normativa académica vigente de la UDC.

Evaluación del alumnado matriculado con necesidades de alguna adaptación curricular:

Dependiendo de las particularidades de cada caso y las posibilidades del profesorado, se ajustarán las pruebas de evaluación para que dicho/a estudiante pueda realizar las mismas pruebas que sus compañeros/as. 

En la oportunidad adelantada a diciembre:

El examen se calificará sobre diez puntos, siendo necesario obtener por lo menos un cinco para aprobar la materia.


Fontes de información
Bibliografía básica Vieites, A.M., Aguado, F., Gago, F., Ladra, M., Pérez, G. y Vidal C. (2014). Teoría de Grafos: Ejercicios resueltos y propuestos. Laboratorio con Sage. Paraninfo
Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. McGraw-Hill
Epp, S. (2012). Matemáticas Discretas con Aplicaciones. Cengage Learning
Aguado, F., Gago, F., Ladra, M., Pérez, G., Vieites, A.M. y Vidal C. (2018). Problemas resueltos de Combinatoria. Laboratorio con SageMath. Paraninfo

Bibliografía complementaria García Merayo, F., Hernández, G. y Nevot, A. (2018). Problemas resueltos de Matemática discreta. Paraninfo
García Merayo, F. (2001). Matemática discreta. Paraninfo


Recomendacións
Materias que se recomenda ter cursado previamente

Materias que se recomenda cursar simultaneamente

Materias que continúan o temario

Observacións

Se recomienda haber cursado las asignaturas de Matemáticas del Bachillerato



(*)A Guía docente é o documento onde se visualiza a proposta académica da UDC. Este documento é público e non se pode modificar, salvo casos excepcionais baixo a revisión do órgano competente dacordo coa normativa vixente que establece o proceso de elaboración de guías