Competencias / Resultados do título |
Código
|
Competencias / Resultados do título
|
Resultados de aprendizaxe |
Resultados de aprendizaxe |
Competencias / Resultados do título |
Capacidade para coñecer os fundamentos, paradigmas e técnicas propias dos sistemas intelixentes, e analizar, deseñar e construír sistemas, servizos e aplicacións informáticas que utilicen as ditas técnicas en calquera ámbito de aplicación. |
A13 A14
|
B2 B4 B5 B7 B8 B9 B10
|
C3
|
Capacidade para adquirir, obter, formalizar e representar o coñecemento humano nunha forma computable para a resolución de problemas mediante un sistema informático en calquera ámbito de aplicación, particularmente os relacionados con aspectos de computación, percepción e actuación en ambientes ou contornos intelixentes |
A13 A14
|
B2 B4 B5 B7 B8 B9 B10
|
C3
|
Contidos |
Temas |
Subtemas |
1. Introducción á Representación do Coñecemento |
Razoamento de Accións e Cambio. Resolución Declarativa de Problemas. Razoamento Automático. Tolerancia á Elaboración. Frame Problem. Razoamento non Monótono. |
2. Razoamento Proposicional |
Cálculo Proposicional. Razoamento Proposicional. Satisfactibilidade. Forma normal conxuntiva. Razoamento proposicional baseado en regras. Programas Lóxicos positivos. Hipótese de mundo pechado. Negación por defecto. Programa reduto e Modelos Estables. |
3. Razoamento Relacional |
Bases de datos dedutivas. Answer Set Programming. Grounding e Safety. Metodoloxía ASP. Funcións agregadas e optimización. |
4. Razoamento Temporal |
Accións e cambio en ASP. Simulación, postdicción, planificación e diagnóstico. Temporal Answer Set Programming. |
5. Razoamento Categórico e Corrección Bayesiana |
Elementos do Razoamento Categórico. Base Lóxica Expandida e Base Lóxica Reducida. Razoamento Diferencial Categórico. Corrección Bayesiana ao Razoamento Categórico. Probabilidades Condicionais. Inconvenientes da Corrección Bayesiana |
6. Redes de Crenza |
Introdución á Teoría de Grafos. Representación do Coñecemento en Redes de Crenza. Inferencia con Redes de Crenza. Aprendizaxe e redes de crenza |
7. Razoamento Cuasi-Estatístico |
Factores de Certidume. Combinación de Evidencias. Propagación de Incerteza. Teoría Evidencial. Marco de Discernimento. Medidas de verosimilitude. Credibilidade, Plausibilidad e Confianza |
8. Razoamento Difuso |
Conxuntos Difusos. Representación do Coñecemento Difuso. Inferencia e Razoamento Difusos. Control Difuso. |
Planificación |
Metodoloxías / probas |
Competencias / Resultados |
Horas lectivas (presenciais e virtuais) |
Horas traballo autónomo |
Horas totais |
Sesión maxistral |
A14 B5 B8 B9 |
30 |
30 |
60 |
Proba mixta |
A4 A42 A43 B1 B3 B9 C6 C7 C8 |
2 |
7 |
9 |
Seminario |
A4 A42 A43 B1 B3 B9 C6 C7 C8 |
5 |
5 |
10 |
Prácticas de laboratorio |
A13 B2 B4 B5 B7 B8 B9 B10 C3 |
14 |
42 |
56 |
|
Atención personalizada |
|
15 |
0 |
15 |
|
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado |
Metodoloxías |
Metodoloxías |
Descrición |
Sesión maxistral |
Clases de teoría en grupo na aula acompañadas de resolución interactiva de exercicios e consulta de dúbidas |
Proba mixta |
Exame de teoría individual para avaliar os coñecementos adquiridos |
Seminario |
Realización de exercicios e resolución de dúbidas en horario de titorías (presenciáis ou en remoto) |
Prácticas de laboratorio |
Realización de unha ou varias prácticas de laboratorio. Cada práctica, pode conlevar a realización dunha proba de defensa. |
Atención personalizada |
Metodoloxías
|
Seminario |
Prácticas de laboratorio |
|
Descrición |
A atención personalizada nas prácticas de laboratorio consistirá nun seguemento permanente na realización das prácticas, procurando que sigan un avance acorde coa avaliación continua.
A atención personalizada nos seminarios consistirá na resolución de exercicios e, sobre todo, a aclaración de dúbidas sobre os contidos da materia de cara á realización da proba mixta. |
|
Avaliación |
Metodoloxías
|
Competencias / Resultados |
Descrición
|
Cualificación
|
Proba mixta |
A4 A42 A43 B1 B3 B9 C6 C7 C8 |
Exame individual onde se valorarán os coñecementos e competencias adquiridas e os conceptos aprendidos durante as sesións maxistráis. O exame puntuará sobre 5 puntos, e dicir, o 50% da asignatura.
*Restricción* para aprobar a asignatura será necesario obter unha nota mínima no exame de 2,5 puntos sobre o máximo de 5.
Se a nota mínima non é acadada, a nota final da asignatura será truncada a 4,8 puntos, no caso de que a suma de todas as calificacións supere ese número. |
50 |
Prácticas de laboratorio |
A13 B2 B4 B5 B7 B8 B9 B10 C3 |
Entrega de unha ou varias prácticas. A avaliación das prácticas pode incluir unha proba individual de defensa. |
50 |
|
Observacións avaliación |
El alumnado con dispensa de asistencia por matrícula a tiempo parcial no podrá realizar prácticas en grupo y deberá completar todas las metodologías (prácticas, problemas y prueba objetiva) de modo individual y con los mismos plazos que el resto del alumnado.
Para todos los demás aspectos relacionados con dispensa académica, dedicación al estudio, permanencia y fraude académico, consúltese la
normativa académica vigente en la UDC.
|
Fontes de información |
Bibliografía básica
|
|
|
Bibliografía complementaria
|
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub (2012). Answer Set Solving in Practice. Morgan and Claypool Publishers
Palma, Marín, eds. (2008). Inteligencia Artificial: Métodos, Técnicas y Aplicaciones. McGraw Hill
Russell, Norvig (2004). Inteligencia Artificial: Un enfoque moderno. Pearson, Prentice Hall
Chitta Baral (2003). Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press
Yulia Kahl, Michael Gelfond (2014). Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press
Castillo, Gutiérrez, Hadi (2009). Sistemas Expertos y Modelos de Redes Probabilísticas. Monografías Academia Ingeniería |
|
Recomendacións |
Materias que se recomenda ter cursado previamente |
Matemática Discreta/614G03003 | Lóxica/614G03016 | Algoritmos/614G03008 |
|
Materias que se recomenda cursar simultaneamente |
Algoritmos Básicos da Intelixencia Artificial/614G03019 | Autómatas e Linguaxes Formais/614G03017 |
|
Materias que continúan o temario |
|
Observacións |
Dependencia de Matemática Discreta: en la asignatura, especialmente en las prácticas, se resuelven múltiples problemas de satisfacción de restricciones cuyo número de soluciones se puede calcular de antemano utilizando las fórmulas de combinatoria ya estudiadas en Matemática Discreta. Además, el lenguaje utilizado en las prácticas depende fuertemente del uso de definiciones inductivas, estudiadas de nuevo en Matemática Discreta. Es frecuente también la resolución de problemas con grafos, un tema de nuevo visto en Matemática Discreta
Dependencia de Lógica: esta asignatura tiene una fuerte dependencia de Lógica, ya que cuenta
con que el alumno posea conocimientos de lógica proposicional y de
primer órden, como elementos básicos para el desarrollo de otros
formalismos de representación del conocimiento basados en lógicas no
clásicas, tales como lógicas modales y lógicas no monótonas. Además, las
prácticas de esta asignatura se basan actualmente en una variante de
programación lógica, Answer Set Programming, con una fuerte conexión con
el lenguaje Prolog, visto en la asignatura de Lógica.
Dependencia de Autómatas y Lenguajes Formales: en este caso, la dependencia es menor, aunque algunos de los conceptos vistos en Representación del Conocimiento, en especial en la resolución práctica de problemas, requieren la comprensión de definiciones y resultados básicos de Complejidad Computacional. También, algunas de las prácticas guardan relación con la manipulación de lenguajes formales y el uso de autómatas.
Dependencia de Algoritmos y de Algoritmos Básicos de IA: en la asignatura, se explican determinado tipo de algoritmos de búsqueda que utilizan heurísticas, como las explicadas en la asignatura de Algoritmos Básicos de IA.
|
|