Competencias / Resultados do título |
Código
|
Competencias / Resultados do título
|
Resultados de aprendizaxe |
Resultados de aprendizaxe |
Competencias / Resultados do título |
Coñecer, entender e saber aplicar a teoría elemental de álxebra lineal necesaria na enxeñaría de obras públicas e, en particular, para outras materias. |
A1
|
B1 B2 B5 B6 B18
|
|
Resolver e formular problemas de álxebra lineal. |
A1
|
B3 B7 B8 B9
|
C10 C11 C12 C13 C15
|
Manexar a ferramenta Octave/MATLAB e coñecer as súas aplicacións para resolver problemas de álxebra lineal |
A1 A2
|
B7 B8 B15
|
C3 C18
|
Ser capaz de manexar e comprender a notación matemática básica. Expresarse con rigurosidade |
A1
|
B4 B12
|
C8 C11 C12 C16
|
Utilizar as técnicas básicas de razoamento lóxico-matemático |
A1
|
B8
|
C10 C11 C12
|
Desenvolver a capacidade de análise e o pensamento crítico. |
A1
|
B8 B20
|
C7 C10
|
Contidos |
Temas |
Subtemas |
I. Preliminares |
I.1 Conxuntos
I.2 Conxuntos numéricos
I.3 Aplicacións
|
II. Matrices e determinantes |
II.1 Primeiras definicións
II.2 Operacións con matrices
II.3 Operacións elementais de fila e columna. Formas escalonadas
II.4 Sistemas de ecuacións lineais
II.5 Inversa dunha matriz: propiedades e cálculo
II.6 Rango dunha matriz
II.7 Definición de determinante
II.8 Desenvolvemento por adxuntos
II.9 Cálculo efectivo dun determinante.
II.10 Determinantes de productos, matrices inversas, matrices traspostas. |
III. Espazos Rn |
III.1 Espazos Rn: definición e operacións.
III.2 Combinacións lineais.
III.3 Subespazos.
III.4 Independencia lineal e rango.
III.5 Concepto de base. Bases canónicas.
III.6 Aplicacións lineais de Rn en Rm.
III.7 Núcleo e imaxe dunha aplicación lineal.
III.8 Composición de aplicacións lineais
|
IV. Espazos vectoriais |
IV.1 Espazos vectoriais: definición.
IV.2 Subespazos vectoriais
IV.3 Bases e dimensión dun espazo vectorial. Propiedades
IV.4 Coordenadas. Cambios de base
IV.5 Aplicacións lineais entre espazos vectoriais. Representación matricial.
IV.6 Isomorfismos.
IV.7 Endomorfismos. |
V. Autovalores e autovectores |
V.1 Autovalores e autovectores: definición, cálculo, propiedades.
V.2 Multiplicidades alxebraica e xeométrica dun autovalor.
V.3 Endomorfismos diagonalizables.
V.4 Potencia n-sima dunha matriz diagonalizable por semellanza. |
VI. Formas bilineais e cuadráticas |
VI.1 Formas bilineais, formas bilineais simétricas e formas cuadráticas.
VI.2 Diagonalización dunha forma bilineal simétrica.
VI.3 Producto escalar e definicións relacionadas.
VI.4 Ortogonalidade.
VI.5 Diagonalización ortogonal de matrices simétricas.
|
VII. Xeometría afín e euclídea |
VII.1 Definición de plano e espazo afín.
VII.2 Sistemas de referencia. Coordenadas dun punto.
VII.3 Cambio de sistema de referencia.
VII.4 Definición de transformación afín.
VII.5 Ecuacións dunha transformación afín.
VII.6 Transformacións afins no plano e no espazo tridimensional.
|
VIII. Cónicas |
VIII.1 Definición de cónica.
VIII.2 Ecuacións dunha cónica en distintos sistemas de referencia.
VIII.3 Ecuación reducida dunha cónica.
VIII.4 Clasificación de cónicas
VIII.5 Estudo particualr de cónicas.
VIII.6 Cuádricas en forma normal |
IX. Introducción a MATLAB/Octave. |
IX.1 Comandos básicos de MATLAB/Octave.
IX.2 Operacións con matrices.
IX.3 Gráficas en MATLAB/Octave.
IX.4 Programación: os scripts e as functions. |
Planificación |
Metodoloxías / probas |
Competencias / Resultados |
Horas lectivas (presenciais e virtuais) |
Horas traballo autónomo |
Horas totais |
Proba de resposta breve |
A1 B5 B8 C10 C12 |
2 |
8 |
10 |
Actividades iniciais |
B1 B8 C10 C15 |
1 |
0 |
1 |
Proba obxectiva |
A1 B3 B6 B8 B7 C10 C11 C12 C16 |
4 |
16 |
20 |
Sesión maxistral |
A1 B12 B20 C3 C7 C10 C12 C16 |
40 |
40 |
80 |
Prácticas a través de TIC |
A1 A2 B15 C3 C18 C8 |
8 |
4 |
12 |
Proba de resposta múltiple |
A1 B8 C10 C12 |
3 |
12 |
15 |
Solución de problemas |
A1 B2 B4 B9 B8 B18 B7 C10 C11 C12 C13 C15 C16 |
43 |
43 |
86 |
|
Atención personalizada |
|
1 |
0 |
1 |
|
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado |
Metodoloxías |
Metodoloxías |
Descrición |
Proba de resposta breve |
Proba obxectiva dirixida a recordar conceptos básicos da materia de forma concisa. |
Actividades iniciais |
Actividades que se levan a cabo antes a fin de coñecer as competencias que posúe o alumnado para o logro dos obxectivos que se queren alcanzar, vinculados a un programa formativo. Con ela preténdese obter información relevante que permita articular a docencia para favorecer aprendizaxes eficaces e significativas, que partan dos saberes previos do alumnado |
Proba obxectiva |
Proba escrita utilizada para a avaliación da aprendizaxe, cuxo trazo distintivo é a posibilidade de determinar se as respostas dadas son ou non correctas. Permite avaliar coñecementos, capacidades, destrezas, rendemento, etc. |
Sesión maxistral |
Exposición oral complementada co uso de medios audiovisuais e a introdución de algunhas preguntas dirixidas aos estudantes, coa finalidade de transmitir coñecementos e facilitar a aprendizaxe.
|
Prácticas a través de TIC |
Metodoloxía que permite ao alumnado aprender de forma efectiva, a través de actividades de carácter práctico a teoría de Álxebra mediante MATLAB. |
Proba de resposta múltiple |
Proba obxectiva consistente en varias cuestións con 4 posibles respostas das que só unha delas é válida |
Solución de problemas |
Formúlanse unha serie de problemas que o estudante debe resolver a partir dos coñecementos que se traballaron en teoría |
Atención personalizada |
Metodoloxías
|
Prácticas a través de TIC |
Solución de problemas |
|
Descrición |
Para aprender a resolver os problemas propostos é importante consultar co profesor os avances que se vaian realizando progresivamente para ofrecer as orientacións necesarias en cada caso.
Os/as estudantes a tempo parcial teñen á súa disposición na plataforma Moodle tanto as presentacións da parte teórica como as prácticas que se resolven nas clases de problemas. Os profesores da materia, en horario de titorías, resolverán todas as dúbidas que lles xurdan ao traballar cos materiais anteriormente mencionados. Este tipo de estudantes poderá superar a materia sen realizar as probas de cada tema nin entregar os problemas propostos. |
|
Avaliación |
Metodoloxías
|
Competencias / Resultados |
Descrición
|
Cualificación
|
Prácticas a través de TIC |
A1 A2 B15 C3 C18 C8 |
Os problemas propostos para entregar incluirán algún apartado que deba ser resolto utilizando MATLAB/Octave |
5 |
Proba de resposta breve |
A1 B5 B8 C10 C12 |
Proba obxectiva dirixida a recordar conceptos básicos da materia de forma concisa. |
20 |
Proba de resposta múltiple |
A1 B8 C10 C12 |
Proba obxectiva que pode conter cuestións con 4 posibles respostas das que só unha delas é válida, preguntas de verdadeiro ou falso ou cuestións de resposta curta que se realizarán ó rematar cada tema. |
12 |
Proba obxectiva |
A1 B3 B6 B8 B7 C10 C11 C12 C16 |
Proba escrita utilizada para a avaliación da aprendizaxe, cuxo trazo distintivo é a posibilidadede determinar se as respostas dadas son ou non correctas. Permite avaliar coñecementos, capacidades, destrezas, rendemento, etc. |
50 |
Solución de problemas |
A1 B2 B4 B9 B8 B18 B7 C10 C11 C12 C13 C15 C16 |
Formúlanse unha serie de problemas que o estudante debe resolver a partir dos coñecementos que se traballaron en teoría |
13 |
|
Observacións avaliación |
- Exames
teórico-prácticos: realizarase unha proba parcial ao final do primeiro
cuadrimestre e outra ao final do segundo. Ademais, un exame final en cada
oportunidade. Cada exame final terá dúas partes (unha por cada parte na que se
divide a materia). Por tanto, haberá tres ocasións para examinarse de cada unha
das dúas partes da materia. - Probas:
ao final de cada tema realizarase unha proba/test voluntario de carácter
teórico. - Prácticas
con entrega: en cada tema propoñeranse unha ou varias prácticas con problemas a
resolver na aula. Nalgunhas destas prácticas utilizarase Octave ou MATLAB para
a resolución das mesmas. Polo menos unha práctica por tema entregarase e
cualificarase como parte da nota de curso.
Na avaliación da materia
seguiranse as seguintes normas: NOTAS DE EXAME Consérvanse as notas de exame dunha oportunidade a outra.
É dicir, a nota de exame asignada a cada parte da materia será en cada momento
a mellor das obtidas en todas as convocatorias, parciais e finais, realizadas
ata ese momento durante o curso. En particular, en caso de non presentarse a
unha das partes da materia nun exame final, conservarase a nota obtida por
parciais, ou no final anterior. NOTA DE CURSO • A nota de curso obtense a
partir das probas (40%) e as prácticas con entrega (60%). • A peor nota tanto de
probas como de prácticas non se terá en conta para a nota de curso. En
particular, a non asistencia a unha soa proba e/ou unha soa práctica supón un 0
que se descartará ao calcular a nota de curso. • A nota de curso pasará a
ser un 0 se a asistencia ás clases prácticas (con e sen entrega) foi inferior
ao 80%. NOTA FINAL - No caso de que as notas
de exame das dúas partes sexan ambas maiores ou iguais a 3.5, a nota final
será o máximo de:
1. notas de exame x 0.7 + nota de curso x 0.3 2. notas de exame
Se a nota dalgunha das dúas
partes é menor que 3.5, non se superou a materia, e a nota final será o mínimo
de 4.5 e a nota calculada no apartado anterior.
- En calquera caso, para
superar a materia é necesario obter polo menos un 5 como nota final.
A realización fraudulenta de probas ou prácticas, unha vez comprobada, implicará directamente a cualificación de "0" na nota de curso. No caso dos exames, implicará directamente a cualificación de suspenso "0" nas partes da materia avaliadas na oportunidade correspondente. Seguirase en todo caso o establecido na normativa académica vixente da UDC.
|
Bibliografía complementaria
|
Burgos, J. de (2007). Álgebra lineal: 80 problemas últiles. García Maroto
Lazo, A. (2008). álgebra preuniversitaria. Limusa
Burgos, J. de (2007). Fundamentos de Álgebra: 65 problemas útiles. García Maroto |
|
Recomendacións |
Materias que se recomenda ter cursado previamente |
|
Materias que se recomenda cursar simultaneamente |
|
Materias que continúan o temario |
|
|