Tema II. Espazos vectoriales euclídeos. |
1. Introdución aos espazos euclídeos.
1.1 Produto escalar.
1.2 Norma dun vector. Propiedades.
1.3 Ángulo entre dous vectores.
2. Ortogonalidade.
2.1 Vectores ortogonales.
2.2 Sistemas ortogonales. Metodo de Gram-Schmidt.
2.3 Singularidades das bases ortonormales.
2.4 Proxección ortogonal.
2.5 Endomorfismos simétricos.
3. Transformacións ortogonales.
3.1 Definición.
3.2 Propiedades.
3.3 Autovalores e autovectores dunha transformación ortogonal.
3.4 Orientación relativa das bases.
3.5 Transformacións ortogonales directas e inversas.
3.6 Clasificación de transformacións ortogonales no plano e no espazo.
4. Produto vectorial e produto mixto.
4.1 Definición.
4.2 Propiedades. |
Tema IV. Cónicas e cuádricas. |
1. Cónicas.
1.1 Definición e ecuacións.
1.2 Intersección dunha recta e unha cónica.
1.3 Polaridade.
1.4 Puntos e rectas notables asociados a unha cónica.
1.5 Descrición das cónicas non degeneradas: elipse, parábola e hipérbola.
1.6 Cambio de sistema de referencia.
1.7 Clasificación de cónicas e ecuación reducida.
1.8. Feixes de cónicas.
2. Cuádricas.
2.1 Definición e ecuacións.
2.2 Intersección dunha recta e unha cuádrica.
2.3 Polaridade.
2.4 Cambio de sistema de referencia.
2.5 Puntos, rectas e planos notables asociados a unha cuádrica.
2.6 Clasificación de cuádricas e ecuación reducida.
2.7 Descrición das cuádricas de rango 3 e 4. |