Identifying Data 2022/23
Subject (*) Applied Physical Chemistry Code 610500005
Study programme
Mestrado Universitario en Ciencias, Tecnoloxías e Xestión Ambiental (plan 2012)
Descriptors Cycle Period Year Type Credits
Official Master's Degree 1st four-month period
First Optional 6
Language
Spanish
English
Teaching method Face-to-face
Prerequisites
Department Química
Coordinador
Iglesias Martinez, Emilia
E-mail
emilia.iglesias@udc.es
Lecturers
Brandariz Lendoiro, Maria Isabel
Fernandez Perez, Maria Isabel
Iglesias Martinez, Emilia
Santaballa Lopez, Juan Arturo
E-mail
i.brandariz@udc.es
isabel.fernandez.perez@udc.es
emilia.iglesias@udc.es
arturo.santaballa@udc.es
Web http://https://campusvirtual.udc.es/moodle/
General description Descriptores: Química Computacional. Química Física Supramolecular: catálisis supramolecular. Reconocimiento Molecular y Biocatálisis. Fotoquímica Aplicada: fotocatálisis. Electroquímica Aplicada: baterias, corrosión.

Study programme competencies
Code Study programme competences
A1 Coñecemento das realidades interdisciplinares da Química e do Medio Ambiente, dos temas punteiros nestas disciplinas e das perspectivas de futuro.
A7 Coñecer o marco teórico e as aplicacións da electroquímica e da fotocatálise nos campos da enerxía e o medio ambiente.
A8 Coñecer os fundamentos das interaccións intermoleculares e as súas aplicacións no campo da catálise supramolecular,recoñecemento molecular e biocatálise.
A9 Coñecer algunhas aplicacións básicas da química computacional e dos programas de cálculo máis utilizados nos ámbitos da química e o medio ambiente.
A11 Coñecer as distintas técnicas experimentais e computacionales orientadas á caracterización de mecanismos de reacción.
A20 Coñecemento dos principais tipos de produtos naturais: enzimas, receptores moleculares, etc. Entender a súa participación en procesos de catálise e autoensamblaxe.
B1 Posuír e comprender coñecementos que acheguen unha base ou oportunidade de ser orixinais no desenvolvemento e/ou aplicación de ideas, a miúdo nun contexto de investigación.
B2 Que os estudantes saiban aplicar os coñecementos adquiridos e a súa capacidade de resolución de problemas en contornas novas ou pouco coñecidos dentro de contextos máis amplos (ou multidisciplinares) relacionados coa súa área de estudo.
B3 Que os estudantes sexan capaces de integrar coñecementos e enfrontarse á complexidade de formular xuízos a partir dunha información que, sendo incompleta ou limitada, inclúa reflexións sobre as responsabilidades sociais e éticas vinculadas á aplicación dos seus coñecementos e suizos.
B5 Que os estudantes posúan as habilidades de aprendizaxe que lles permitan continuar estudando dun modo que haberá de ser en gran medida autodirixido ou autónomo.
C1 Ser capaz de traballar en equipos, especialmente nos interdisciplinares e internacionais.
C3 Ser capaz de adaptarse a situacións novas, mostrando creatividade, iniciativa, espírito emprendedor e capacidade de liderado.
C5 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C6 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C9 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C10 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C11 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Learning outcomes Study programme competences
To analyze the properties of new microstructures, such as micelles, microemulsions, vesicles, liposomes, cyclodextrins, dendrimers, nanoparticles, etc. .. To explore new applications of these structures in basic processes, such as solubility, diverse equilibria, elimination processes, detection of compounds of interest .. ., and primarily on reactivity. BC1
BC2
BC3
BC5
CC1
CC3
CC5
CC9
CC11
To acquire knowledge of new molecular structures, originating in solution, which are in borderline with biological systems. To know the applications of these media in the optimization of chemical separation processes, synthesis reaction, contaminant removal, etc.. AC1
AC7
AC8
AC9
AC11
AC20
To acquire basic knowledge framed in Computational Chemistry, with special emphasis on the electronic structure calculations. To meet the most popular computer programs related to Computational Chemistry. To learn to make simple calculations of geometries, energies and other molecular properties. AC1
AC7
AC8
AC9
AC11
BC1
BC2
BC3
BC5
CC1
CC3
CC5
CC6
CC9
CC10
CC11

Contents
Topic Sub-topic
TEMA 1.Computational Chemistry Introduction
Ab Initio Methods
Functional Theory Density
Semiempirical methods
Base functions
Molecular Mechanics
Molecular dynamics. Computational Chemistry Programs
Calculating properties
TEMA 2. Physical Chemistry Supramolecular Surfactants in water.
Surfactants in solvents.
Chemical reactions in microheterogeneous media: the simple pseudophase model and the ion-exchange pseudophase model .
TEMA 3. Molecular Recognition and Biocatalysis Host-guest systems.
Typical hosts: cyclodextrins, polyethers, siderophiles, dendrimers, ..., DNA.
Ligands of interest: ions, drugs, pesticides, cosmetics.
Pharmacological and industrial applications.
TEMA 4 Applied Photochemistry Photochemical reactions. photocatalysis
Supramolecular Photochemistry. Fluorophores and microenvironment.
Photochemical processes in supramolecular complexes.
Fluorescence protein. DNA technology.
TEMA 5. Applied Electrochemistry Potentiometric titrations.
Ion-selective electrodes. Membrane potentials.
Batteries and fuel cells.
Corrosion.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A7 A8 A9 A11 A20 15 15 30
Laboratory practice B1 B5 C3 C1 C9 C11 20 40 60
Supervised projects B1 B2 B3 C5 C6 C10 8 20 28
Long answer / essay questions A1 A7 A8 A9 A20 4 8 12
Multiple-choice questions A1 A7 A8 A9 A20 4 16 20
 
Personalized attention 0 0 0
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech It will be described the general lines of the course and the introduction of its fundamental contents.
Laboratory practice Application of technologies and methodologies to the study and characterization of specific chemical systems related to the contents of the subject.
Supervised projects The student will read one or two recent articles related to supramolecular chemistry topics to prepare a report summarizing the relevant information and results.
Long answer / essay questions Written test to evaluate the reasoning, synthesis, writing ability ... in practical questions of a certain extent.
Multiple-choice questions Written test to measure comprehension ability, reasoning, synthesis, drafting, ..., of the student towards questions of certain extent.

Personalized attention
Methodologies
Supervised projects
Laboratory practice
Description
The use of tutorials is recommended (either in person, by email, through the Moodle forums or through Teams) to resolve any questions that arise in relation to any topic or type of methodology.
Teachers will be available to solve any need or answer any questions during the established tutoring hours.
Part-time students or those with academic attendance exemption will be attended in tutorials, both in person and by telematic means, whenever they need it.

Assessment
Methodologies Competencies Description Qualification
Supervised projects B1 B2 B3 C5 C6 C10 The report is evaluated, which can be prepared following a questionnaire that specifies the system under study, the technique and methodology used, the results obtained, the most relevant conclusions and the future perspective proposed by the student. 40
Long answer / essay questions A1 A7 A8 A9 A20 Reduced length test to measure the degree of assimilation and understanding of concepts and the ability to synthesize and write. It can be done through Moodle or in person. 10
Laboratory practice B1 B5 C3 C1 C9 C11 Expertise, skills shown in the laboratory. Results obtained in the experimental work.
40
Multiple-choice questions A1 A7 A8 A9 A20 Multiple-choice test to answer through Moodle in a limited time on basic and conceptual contents. 10
 
Assessment comments


Sources of information
Basic Bockris, John O'M., Reddy, Amulya K.N. Gamboa-Aldeco, Maria. (2000). Modern electrochemistry 2B. Electrodics in chemistry, engineering, biology, and environmental science. New York : Kluwer Academic / Plenum Publishers]
Connors, K.A. (1987). Binding Constants. The Measurement of Molecular Complex Stability. . Wiley & Sons: New York,
Lewars, E. G. (2011). Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Springer
J. Szejtli (1988). Cyclodextrin Technology. Kluwer Academic Publishers (The Neherlands)
Hinchliffe, A. (2008). Molecular Modelling for Beginners. Wiley
J. R. Lakowicz (2006). Principles of Fluorescence Spectroscopy. Springer Science (New York)
V. Balzani, F. Scandola (1991). Supramolecular Photochemistry. Ellis Horwood (Chicherter, England)
M. J. Rosen (1989). Surfactants and Interfacial Phenomena. John Wiley & Sons
Raoutl Zana (1987). Surfactants in Solution. New Methods of investigation. Marcel Dekker (New York)

Complementary Cramer, C. A. (2004). Essentials of Computational Chemistry: Theories and Models. Wiley


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.