Identifying Data 2020/21
Subject (*) Physical Chemistry 1 Code 610G01016
Study programme
Grao en Química
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Second Obligatory 6
Language
Spanish
English
Teaching method Hybrid
Prerequisites
Department Química
Coordinador
Rodriguez Barro, Pilar
E-mail
pilar.rbarro@udc.es
Lecturers
Rodriguez Barro, Pilar
Vilariño Barreiro, Maria Teresa
E-mail
pilar.rbarro@udc.es
teresa.vilarino@udc.es
Web
General description A Química Física adícase ao estudo dos principios físicos fundamentais que gobernan as propiedades e o comportamento dos sistemas químicos. Un sistema químico pode ser estudado dende un punto de vista microscópico ou macroscópico. Neste primeiro curso de Química Física introdúcese a metodoloxía do estudo microscópico dos átomos e as moléculas (Química Cuántica) e a metodoloxía que permite calcular propiedades macroscópicas dos sistemas en equilibrio a partires de propiedades moleculares (Termodinámica Estadística).
Os contidos que se imparten nesta materia constituen os fundamentos teóricos imprescindibles para a materia de Química Física 2 e un marco de referencia para as demáis ramas da Química que necesariamente aplican boa parte dos conceptos estudados nesta materia ao desenvolvemento dos seus programas específicos.
Contingency plan 1. Modificacións nos contidos

No se farán cambios

2. Metodoloxías

*Metodoloxías docentes que se mantienen

- Probas obxectivas (computan na avaliación)
- Traballos tutelados (con Atención personalizada) (computan na avaliación)

*Metodoloxías docentes que se modifican

- Sesión maxistral. No momento que se suspenda a docencia presencial as sesións maxistrais impartiranse por videoconferencias síncronas, facendo uso da ferramenta Teams. O horario das mesmas será o asignado á materia en Xunta de Facultade.
- Seminarios. No momento que se suspenda a docencia presencial os seminarios impartiranse por videoconferencias síncronas, facendo uso da ferramenta Teams. O horario dos mesmos será o asignado á materia en Xunta de Facultade.
- Prácticas (computan na avaliación) Programaranse videoconferencias síncronas para explicar as prácticas que se realizarán facendo uso da plataforma Moodle.
- Proba mixta (computa na avaliación) No caso de que se suspenda a presencialidade, farase a través da plataforma Moodle.
– Atención personalizada. Realizarase facendo uso dos mecanismos que se indican no apartado 3.

3. Mecanismos de atención personalizada al alumnado

-Correo electrónico: A demanda das necesidades dos estudantes. Empregarase fundamentalmente para facer consultas, resolver dúbidas e solicitar titorías.
–Moodle: Indícanse as actividades para realizar antes e durante cada sesión de seminario, así como a descrición detallada dos traballos tutelados. Ademais, crearanse foros temáticos co obxecto discutir e resolver cuestións e problemas relacionados cos contidos da materia. As probas obxectivas realizaranse tamén facendo uso desta plataforma. A proba mixta, no caso de que se suspenda a docencia presencial, levará a cabo mediante o Moodle.
– Teams: Empregarase para impartir, por videoconferencias síncronas, as sesións maxistrais e os seminarios no caso de que se suspenda a docencia presencial. Ademais, a demanda das necesidades dos estudantes, previa solicitude por correo electrónico, servirá como ferramenta para realizar titorías, expoñer traballos tutelados ou calquera outra actividade relacionada coa docencia da materia.

4. Modificaciones en la evaluación

No haberá cambios mais aló de adaptar la prueba mixta al formato no presencial.

*Observaciones de evaluación:

5. Modificaciones de la bibliografía o webgrafía

Engadiranse ligazóns das edicións electrónicas dos textos que estean dispoñibles.

Study programme competencies
Code Study programme competences
A1 Ability to use chemistry terminology, nomenclature, conventions and units
A8 Knowledge of principles of quantum mechanics and atomic and molecular structure
A12 Ability to relate macroscopic properties of matter to its microscopic structure
A14 Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry
A15 Ability to recognise and analyse new problems and develop solution strategies
A16 Ability to source, assess and apply technical bibliographical information and data relating to chemistry
A21 Understanding of qualitative and quantitative aspects of chemical problems
B2 Effective problem solving
B3 Application of logical, critical, creative thinking
B5 Teamwork and collaboration
C1 Ability to express oneself accurately in the official languages of Galicia (oral and in written)
C3 Ability to use basic information and communications technology (ICT) tools for professional purposes and learning throughout life

Learning aims
Learning outcomes Study programme competences
To know the principles of quantum chemistry. A1
A8
A14
A15
A16
B2
B5
C3
To know the principles of statistical thermodynamics. A1
A12
A14
A16
B2
B5
C3
To be able to perform calculations independently, even when a computer is needed. A1
A14
A15
A16
A21
B2
B5
C1
C3
To acquire literature search skills to be able to search for and use scientific literature. A14
A15
A16
A21
B3
C1
C3
To acquire skills in the use of computer tools to solve problems. A8
A15
B2
B3
C3

Contents
Topic Sub-topic
QUANTUM CHEMISTRY
1. Postulates of quantum mechanics - Postulate 1: the state of a quantum-mechanical system is completely specified by its wave function.
- Postulate 2: quantum-mechanical operators represent classical mechanical variables.
- Postulate 3: eigenvalue equation.
- Postulate 4: average value.
- Postulate 5: time-dependent Schrödinger equation.
2. Translational motion: a particle in a box. - A particle in a one-dimensional box: wave functions and energy levels.
- A particle in two and more dimensions:separation of variables and degeneracy.
3. Vibrational motion: the harmonic oscillator. - Quantum mechanical model: wave functions and energy levels.
- The harmonic oscillator as a model for a vibrating diatomic molecule.
- Anharmonicity.
4. Rotational motion: rigid rotator. - Motion of a particle in a ring.
- Wave functions. Spherical harmonics.
- Rotational energy: energy levels.
- The quantization of angular momentum.
5. Hydrogenic atoms. - Formulation of the Schrödinger equation.
- Atomic orbitals and their energies.
- The radial probability distribution function.
- The lineal combination of degenerate wavefunctions.
- Zeeman effect.
6. Aproximation methods. - Perturbation theory.
- Variational method.
- Lineal variational trial functions: secular determinant.
7. Many-electron atoms. - Helium atom.
- Spin angular moment.
- Pauli exclusion principle.
- Periodic Table.
8. Atomic spectroscopy. - Electron configuration of atoms.
- Total orbital angular moment: Russell-Saunders coupling and jj coupling.
- Term symbols. Hund´s rules. Selection rules.
9. The chemical bond: the hydrogen molecule-ion. - The Born-Oppenheimer approximation.
- Molecular orbital theory and valence-bond theory.
- Molecular orbital treatment of hydrogen molecule-ion.
10. Diatomic molecules. - General considerations for bond formation.
- Homonuclear diatomic molecules.
- Heteronuclear diatomic molecules. Polar bonds and electronegativity.
11. Conjugated and aromatic molecules. - Semi-empirical methods.
- Pi-electron approximation.
- Free electron molecular orbital theory.
- The Hückel approximation.
STATISTICAL THERMODYNAMICS
12. Foundations of statistical thermodynamics. - Fundamentals of statistical mechanics.
- Basis of statistical thermodynamics.
- Statistical thermodynamics of ideal gases.
- Statistical interpretation of the thermodynamic properties of solids.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A8 A12 A21 28 56 84
Seminar A14 A15 B2 B3 10 25 35
Laboratory practice A1 A8 A21 C1 C3 10 5 15
Supervised projects A1 A8 A16 B2 B3 B5 C1 C3 0 10 10
Objective test A1 A8 A14 2 0 2
Mixed objective/subjective test A1 A8 A12 A14 A15 A21 B2 B3 3 0 3
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Oral presentation, complemented by the use of audiovisual material and the interaction with the students, to introduce the basic contents of the subject to transmit knowledge and facilitate learning.
Seminar Activity to be developed in small groups.
In-depth study of the contents introduced in the keynote lectures.
Questions and problems related to the contents of the subject are discussed and/or are solved in group, with support and direct supervision of the lecturer.
The activity to be carried out before and during each session are indicated prior to a face-to-face session.
Laboratory practice Computer practices developed at the informatic labs.
Practical problems related to the contents of Quantum Chemistry are solved by using computer software commonly used in scientific calculations.
Students must solve and hand-in a questionnaire concerning the practical sessions.
Supervised projects Homework performed in groups aimed at helping students to work independently, under the guidance of the lecturer.
Activities related to the contents of the seminars are proposed. They must be solved in group and, subsequently, must be explained to the instructor in a face-to-face session.
This activity is open exclusively to students attending the seminars on a regular basis (80%).
Objective test Three tests to be held during the semester. The tests can combine multiple-choice questions and short answer questions.
- First test at the first weeks of the semester. The basic principles and the formulation of quantum theory are assessed.
- Second test at mid-semester. The applications of the basic principles of quantum theory to simple systems are assessed.
- Third test at the end of semester. The application of quantum chemistry to atoms and molecules is assessed.
The tests are solved and discussed in a subsequent session.
They will serve as feed-back to both students and instructors to assess the progress of the teaching-learning process.
Mixed objective/subjective test Final written exam to be held at the end of semester, and in second chance in July.
Knowledge, understanding, reasoning and critical thinking are assessed.
It will consist on a combination of different types of questions: multiple choice and/or short answer combined with problem solving.
It will be held on the dates approved by the Faculty Board.

Personalized attention
Methodologies
Seminar
Supervised projects
Description
Homework of supervised projects done by each group should be presented to the instructor in a tutoring session.
In addition, students are encouraged to make use of the tutoring sessions to solve any doubt.
Tutoring schedule will be decided at lecturers and students convenience.
Part-time students and those with special academic leave permission could ask for presential or email tutorials when necessary.

Assessment
Methodologies Competencies Description Qualification
Objective test A1 A8 A14 Three tests during the semester. The tests will consist of short short answer questions and/or multiple-choice questions.

- First test at the first weeks of the semester. The basic principles and the formulation of quantum theory are assessed. It contributes 5% to the final mark.
- Second test at mid-semester. The applications of the basic principles of quantum theory to simple systems are assessed. It contributes 10% to the final mark.
- Third test at the end of semester. The application of quantum chemistry to atoms and molecules is assessed. It contributes 10% to the final mark.
25
Mixed objective/subjective test A1 A8 A12 A14 A15 A21 B2 B3 Final written exam at the end of semester. It will be held on the official dates approved by the Faculty Board.
All contents of the subject are assessed.
It has two different types of questions: short answer questions (50%) combined with problem solving (50%).

60
Laboratory practice A1 A8 A21 C1 C3 Assessment of skills in solving problems of Quantum Chemistry by using computer software commonly used in scientific calculations.
Attendance to all scheduled computer lab. sessions is mandatory to pass the course.
The final written report is also assessed.
10
Supervised projects A1 A8 A16 B2 B3 B5 C1 C3 Assesment of teamwork skills in resolution of problems or questions related to the contents of the seminars.
Apart from the solution of the proposed activities, the active paticipation in the face-to-face session also contribute to the assessment.
Only students who attend the seminars on a regular basis (80%) can participate and be evaluated in this activity.
5
 
Assessment comments

Requirements to pass the course:

- Attendance to all scheduled computer lab sessions is mandatory to pass the course.

- It is compulsory the regular attendance to
the keynotes and seminar sessions to attend computer practical sessions.

- To pass the course, the final average grade has to be equal to or greater than 5 (out of a
possible 10) and the minimum score on the final written exam must have been 4.5 (out of 10). If the average grade is equal to or greater than 5 (out of 10) but the threshold
mark on the final examn was not met, the final grade will be 4.5 (fail).

- Students who has attended the practical sessions or the final exam will be assessed.

Second opportunity of July

- According to the rules contained in “Probas de Avaliación e Actas de Cualificación de Grao e Mestrado”, the so-called “second opportunity of July” is understood as a second opportunity to retake the final written exam. The mark of  this second exam will be considered together with the others obtained during the course, corresponding to the other activities. The percentages of the different contributions will be the same as those of the former "first opportunity".

-Mark Honors: priority is given in the first opportunity (January). Honors may only be granted in July if their number have not be exhausted in January final qualifications.

Part-time students (according to the rules of the UDC):

The same evaluation criteria listed above are applied.

Students with special academic permission (according to the rules of the UDC):

It is not mandatory to attend classroom lectures, to hand-in the supervised projects and to attend the objective test. 

It is compulsory to attend computer practical sessions. It will be tried to fit the dates to the student's availability.

The final grade will be the sum of 10% of the mark obtained in the practical sessions and 90% of the mark obtained in the mixed test. The same criteria will be applied to both opportunities.

Students who has not attended the final exam will be assessed as "non attendance".


Sources of information
Basic ATKINS, P.W. (2014). PHYSICAL CHEMISTRY. Oxford University Press
ENGEL,T REID,P. (2013). PHYSICAL CHEMISTRY. Pearson Education
McQUARRIE (1997). PHYSICAL CHEMISTRY. University Science Books
ATKINS, P.W. (2008). QUÍMICA FÍSICA. Panamericana
ENGEL, T; REID, P. (2006). QUÍMICA FÍSICA. Pearson Addison Wesley

Complementary http://www.m-w.com (). DICCIONARIO DE INGLÉS ONLINE (Merriam Webster).
LEVINE, I.N. (2004). FISICOQUÍIMICA 5ª edición. McGraw-Hill
Página Web de ISI Web of Knowledge (). http://isi02.isiknowledge.com/.
Página Web del Curso de Química Cuántica del Instituto Tecnológico de Massachusetts MIT (en inglés) (). http://ocw.mit.edu/courses/chemistry/5-61-physical-chemistry-fall-2013/lecture-notes/.
Publicaciones de la American Chemical Society (). http://pubs.acs.org/about.html.
Science Direct (). http://www.sciencedirect.com.
RAFF, L.M. (2001). PRINCIPLES OF PHYSICAL CHEMISTRY. Prentice Hall
HERNANDO, J. M. (1974). PROBLEMAS DE QUÍMICA FÍSICA. Gráficas Andrés Martín
McQUARRIE (2008). QUANTUM CHEMISTRY. University Science Books
LOWE (2006). QUANTUM CHEMISTRY 3ª Ed.. Elsevier
LEVINE, I.N. (2001). QUIMICA CUÁNTICA 5ª ed. Prentice Hall
DÍAZ PEÑA,M. ROIG MUNTANER, A. (1988). QUÍMICA FÍSICA. Alhambra


Recommendations
Subjects that it is recommended to have taken before
Mathematics 1/610G01001
Mathematics 2/610G01002
Physics 1/610G01003
Physics 2/610G01004
General Chemistry 1/610G01007
General Chemistry 2/610G01008

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Physical Chemistry 2/610G01017

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.