Identifying Data 2020/21
Subject (*) Chemical Engineering Code 610G01033
Study programme
Grao en Química
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Third Obligatory 6
Language
Spanish
Teaching method Hybrid
Prerequisites
Department Química
Coordinador
Kennes , Christian
E-mail
c.kennes@udc.es
Lecturers
Kennes , Christian
Soto Castiñeira, Manuel
Vega Martin, Alberto de
Veiga Barbazan, Maria del Carmen
E-mail
c.kennes@udc.es
m.soto@udc.es
alberto.de.vega@udc.es
m.carmen.veiga@udc.es
Web
General description A materia describe os conceptos básicos da Enxeñaría Química (operacións unitarias, balances de materia, enerxía e cantidade de movemento, fundamentos de fenómenos de transporte, e reactores químicos)
Contingency plan 1. Modificacións nos contidos
Non se realizarán cambios

2. Metodoloxías
*Metodoloxías docentes que se manteñen
Sesión magistral
Resolución de problemas
Prueba objetiva
Atención personalizada

3. Mecanismos de atención personalizada ao alumnado
- Correo electrónico: Diariamente, de lunes a viernes, para solicitar algún encuentro virtual para resolver dudas. En horario de clase o tutorías para hacer consultas o para la resolución de problemas.
– Moodle: Diariamente, de lunes a viernes. Según la necesidad del alumnado. Dispone de “foros temáticos” para formular as consultas necesarias.
– Teams: Sesiones para el avance de los contidos teóricos (grupo grande) y la resolución de problemas (grupos reducidos) en la franja horaria asignada a la materia, con el profesor corespondiente.

4. Modificacións na avaliación
*Observacións de avaliación:
Se mantienen las mismas que figuran na guía docente, no se realizan modificaciones en la metodología de evaluación. Únicamente la prueba objetiva se realizaría de forma no presencial (vía Moodle y/o Teams o cualquier otra plataforma con características simnilares), tanto en la primera como en la segunda oportunidad.
La situación es igual para el alumnado con dedicación completa como para el alumnado con reconocimiento de dedicación a tiempo parcial y dispensa académica de la exención de asistencia, según establece la "NORMA QUE REGULA O RÉXIME DE DEDICACIÓN AL ESTUDIO DE LOS ESTUDIANTES DE GRADO EN LA UDC (Arts. 2.3; 3.b e 4.5) (29/5/212).

5. Modificacións da bibliografía ou webgrafía
Non se realizarán cambios.

Study programme competencies
Code Study programme competences
A11 Knowledge and design of unit operations in chemical engineering
A15 Ability to recognise and analyse new problems and develop solution strategies
A19 Ability to follow standard procedures and handle scientific equipment
A20 Ability to interpret data resulting from laboratory observation and measurement
A25 Ability to recognise and analyse link between chemistry and other disciplines, and presence of chemical processes in everyday life
B2 Effective problem solving
B5 Teamwork and collaboration
C2 Oral and written proficiency in a foreign language
C3 Ability to use basic information and communications technology (ICT) tools for professional purposes and learning throughout life

Learning aims
Learning outcomes Study programme competences
Know the fundamentals of unit operations in Chemical Engineering and of their design A11
A15
A19
A20
A25
B2
B5
C2
C3
Apply mass and energy balances to unit operations and (bio)reactors A11
A15
A19
A20
A25
B2
B5
C2
C3
Know the fundamentals of applied kinetics and of the design of (bio)reactors A15
A19
A20
B2
B5
C2
C3
Know the fundamentals of mass transfer and heat transfer A11
A15
A19
A20
A25
B2
B5
C2
C3

Contents
Topic Sub-topic
1. Introduction to Chemical Engineering. Fundamentals of chemical engineering. Representative examples of processes in the chemical industry. Definitions of common use: (non) continuous operation, (non) steady-state, equilibrium stages, contact between phases, etc.
2. Fundamentals of unit operations. Classification of unit operations. Mass transfer-, heat transfer-, simultaneous mass and heat transfer-, and momentum transfer- operations. Representative examples of unit operations. Equipment description.
3. Transport phenomena. Mass transport. Heat transfer. Momentum transfer. Fundamentals of rheology. Viscosity. Analogy between different transfer processes and their governing laws. Examples.
4. Introduction to balance equations. General problem-solving strategies. Different types of balances. Dimensions, units, and their conversion.
5. Mass balances on non-reactive processes. General case. Recycle, purge, and by-pass. Steady- and non-steady- state.
6. Mass balances on reactive processes. Simple and multiple reactions. Recycle, purge, and by-pass. Steady- and non-steady- state..
7. Energy balances. Forms of energy. Fundamentals of energy balances. Steady- and non-steady- states.
8. Chemical reactors and bioreactors. Ideal batch reactors and continuous reactors. Constant and variable volume/density reactors. Design equations. Non-ideal flow. Multiple reactors. Rate equations. Determination of kinetic data.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Laboratory practice A11 A19 A20 B2 B5 C2 C3 10 15 25
Guest lecture / keynote speech A11 A15 A25 B2 C3 26 65 91
Problem solving A11 A15 B2 C3 9 20.25 29.25
Mixed objective/subjective test A11 A15 A25 B2 3 0 3
 
Personalized attention 1.75 0 1.75
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Laboratory practice Experimental work during which the students will use the laboratry set-up in order to check compliance with theoretical models in practice.
Guest lecture / keynote speech Background and theoretical aspects of each topic will be explained, several examples and problems will be studied and solved and some basic exercises will be solved in large groups.
Problem solving Sessions in which the students must solve proposed exercises and problems related to various topics, in small groups.
Mixed objective/subjective test Written exam consisting of questions about theroy and/or problems.

Personalized attention
Methodologies
Laboratory practice
Problem solving
Description
The students will resolve exercises individually (Small student groups) and will attend the practical work in the laboratory with the help and personalised attention of the professor of practicals. The guidelines to be followed will be explained before each laboraory session. The students with part time dedication will have to justify their absence in case of not being able to attend classes on the planned schedule. Exercices handed out by the teacher will have to be solved and delivered to the professor, on the planned date, by all students.

Assessment
Methodologies Competencies Description Qualification
Laboratory practice A11 A19 A20 B2 B5 C2 C3 Puntuásese o traballo realizado no laboratorio e o informe final 15
Guest lecture / keynote speech A11 A15 A25 B2 C3 Participación en clase e resolución de exercicios. 10
Mixed objective/subjective test A11 A15 A25 B2 Exame escrito (teoría e/ou problemas) 75
 
Assessment comments

- The work done in the laboratory will be taken into account as well as the report describing the results, corresponding to the analysis of data, and conclusions. Both aspects will represent 20% of the final mark.

- Active assistance to all activities (full time students) as well as exercises to be solved individually and delivered to the professor: 20% of the final mark. For part-time students, the mark will be based on solved exercises to be delivered to the professor. 

- Final examination: 60% of the final score.

- The overall score will be the sum of the above described marks. It will be considered that the student did not present the subject´s exam if he/she did not go for the final examination.

- In order to pass, the student should obtain a mínimum mark of 5/10 in the final exam; otherwise the final grading will be "fail" (4.9). The student will also fail in case the exercises to be solved and delivered to the professor have not been delivered or have not been delivered on time, before the deadline.

- The "matrícula de honor" will be rewarded to the students that achieved the maximum score in the first opportunity of evaluation. In the second opportunity, the same marks will be maintained for the lab-course (20% of the final score) as well as assistence (full time students) and delivery of the exercices (20% of the final score) but it will be required to repeat the final written exam that will represent 80% of the final score. For successive academic courses, a new teaching-learning process will start again, and the student will therefore have to repeat all activities and examinations for that new academic course.

- The completion and delivery of exercises is mandatory ("grupos reducidos").

- Second opportunity: the marks obtained by the students in each of the tests, except the written exam, during the academic year, will be maintained to calculate the score of the next opportunity, applying the same percentages as for the first opportunity. This means that the written exam (Objective test) represents 60% of the final score, both in the first and the second opportunity.o


Sources of information
Basic COSTA LÓPEZ y col. (). Curso de Química Técnica: Introducción a los procesos, las operaciones unitarias y los fenómenos de transporte en la Ingeniería Química. Editorial Reverté, Barcelona
LEVENSPIEL, O., (). Ingeniería de las reacciones químicas. Ed. Reverté, Barcelona
COSTA NOVELLA y col. (). Ingeniería Química. Vol. 1. Conceptos generales. Edición Alhambra, Madrid
THOMPSON, E.V. & CECKLER, W.H., (). Introducción a la Ingeniería Química. McGraw-Hill
FELDER, R.M. & ROUSSEAU, R.W., (). Principios elementales de los procesos químicos. Addison- Wesley Iberoamericana, Wilmington
HIMMELBLAU, D.M., (). Principios y cálculos básicos de Ingeniería Química. C.E.C.S.A. México

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

 



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.