Identifying Data 2020/21
Subject (*) Chemical Technology Code 610G01041
Study programme
Grao en Química
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Fourth Optional 4.5
Language
Galician
Teaching method Face-to-face
Prerequisites
Department Química
Coordinador
Ruiz Bolaños, Isabel
E-mail
isabel.ruiz@udc.es
Lecturers
Ruiz Bolaños, Isabel
E-mail
isabel.ruiz@udc.es
Web
General description O obxecto fundamental da materia "Tecnoloxía Química" é a aplicación dos coñecementos da Enxeñaría Química á resolución dos problemas ambientais, introducindo diferentes procesos que se empregan no tratamento de efluentes líquidos e gaseosos, e na xestión e valorización de residuos sólidos.
Contingency plan 1. Modificacións nos contidos
Non hai modificación de contidos
2. Metodoloxías
*Metodoloxías docentes que se manteñen
A realización do traballo titorizado
*Metodoloxías docentes que se modifican
As clases maxistrais se impartirán con presentacións en Moodle e/ou Teams.
As sesións de problemas se realizarán mediante tarefas en Moodle e titorías en Teams.
A presentación oral do traballo se realizará en Teams.
3. Mecanismos de atención personalizada ao alumnado
O alumnado poderá contactar mediante correo electrónico para solicitar titorías por Teams sempre que o precise.
4. Modificacións na avaliación
Non se contemplan modificacións na avaliación.
*Observacións de avaliación:

5. Modificacións da bibliografía ou webgrafía
Non hai.

Study programme competencies
Code Study programme competences
A7 Knowledge and application of analytical methods
A10 Knowledge of chemical kinetics, catalysis and reaction mechanisms
A11 Knowledge and design of unit operations in chemical engineering
A13 Understanding of chemistry of main biological processes
A14 Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry
A15 Ability to recognise and analyse new problems and develop solution strategies
A16 Ability to source, assess and apply technical bibliographical information and data relating to chemistry
A19 Ability to follow standard procedures and handle scientific equipment
A20 Ability to interpret data resulting from laboratory observation and measurement
A21 Understanding of qualitative and quantitative aspects of chemical problems
A22 Ability to plan, design and develop projects and experiments
A24 Ability to explain chemical processes and phenomena clearly and simply
A25 Ability to recognise and analyse link between chemistry and other disciplines, and presence of chemical processes in everyday life
A28 Acquisition, assessment and application of basic principles of industrial activity, organisation and task management
B1 Learning to learn
B2 Effective problem solving
B3 Application of logical, critical, creative thinking
B4 Working independently on own initiative
B5 Teamwork and collaboration
B6 Ethical, responsible, civic-minded professionalism
B7 Effective workplace communication
C2 Oral and written proficiency in a foreign language
C5 Understanding importance of entrepreneurship, and knowledge of resources available for people with business ideas
C6 Ability to assess critically the knowledge, technology and information available for problem solving
C8 Understanding role of research, innovation and technology in socio-economic and cultural development

Learning aims
Learning outcomes Study programme competences
To apply the knowledge of Chemistry to the identification of the main environmental problems that concern wastewater, gaseous effluents and solid waste. A10
A13
A14
A16
A24
A25
A28
B1
B3
B7
To know the available technologies to address water and atmosphere pollution and the management of solid waste. A7
A11
A13
A14
A15
A16
A24
A25
A28
B1
B2
B3
B4
B5
B6
B7
C2
C5
C6
C8
To perform simple techniques for characterizing contaminated effluents. A7
A19
A20
A21
A22

Contents
Topic Sub-topic
Chapter 1. Introduction to environmental engineering. Overview of the environmental problems and their management.
Chapter 2. Wastewater treatment. Introduction. Physical treatment processes. Biological treatment processes and technologies.
Chapter 3. Treatment of gaseous effluents. Introduction. Systems for pollution abatement. Treatment technologies to treat contaminated gases and vapors.
Chapter 4. Waste valorisation and treatment. Introduction. Types of Waste. Waste valorization and management. Waste treatment technologies.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A7 A10 A13 A14 A19 A21 A25 A28 C2 C8 14 28 42
Problem solving A7 A11 A13 A14 A15 A16 A20 A21 A25 B1 B3 B4 B5 C2 10 25 35
Supervised projects A14 A16 A20 A21 A22 A24 B6 C8 C5 C2 2 20 22
Oral presentation A14 A16 A24 B7 2 6 8
Mixed objective/subjective test A13 A14 A16 A24 B2 B3 B7 C6 2 4 6
 
Personalized attention 0 0 0
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Classes with the theoretical content of the subject.
Problem solving These sessions will address the resolution of practical exercises related to the design of some of the equipment used in pollutant treatment.
Supervised projects Cada alumno/a realizará un traballo profundizando nalgún aspecto dun dos temas que se abordarán nas sesións maxistrais.
Oral presentation O/A alumno/a realizará unha presentación en 15 min. do traballo realizado.
Mixed objective/subjective test A final written exam to assess the knowledge acquired by the student will be held at the end of the course.

Personalized attention
Methodologies
Description
The teacher will help the student with the doubts that may arise in performing the activities entrusted to it. It will take place in the timetable available to the teacher.

In the case of justified exceptional circumstances, additional measures may be taken so that the student can pass the subject, such as flexibility in the delivery date of supervised projects and in practice schedules.

Assessment
Methodologies Competencies Description Qualification
Problem solving A7 A11 A13 A14 A15 A16 A20 A21 A25 B1 B3 B4 B5 C2 Students will be asked to do and hand some of the proposed exercises to its evaluation. 15
Supervised projects A14 A16 A20 A21 A22 A24 B6 C8 C5 C2 O/A alumno/a realizará o traballo a partir de 3-5 artigos de investigación relacionados co temario. 25
Oral presentation A14 A16 A24 B7 O/A alumno/a realizará unha presentación oral do seu traballo, que terá unha duración aprox. de 15 min. 10
Mixed objective/subjective test A13 A14 A16 A24 B2 B3 B7 C6 Students must to do a final written test that will assess the acquired knowledge. 50
 
Assessment comments

To pass the
subject, it is required at least a score of 4 (out of 10) in each of the assessment
activities, and a global average score equal to or greater than 5 (out of 10).
Even if the global grade is equal or greater than 5, if a student does not get
the minimum score in any of the activities, the final mark will be 4,5 (fail).

In the
second opportunity (July) only it's possible to improve the score in the test.

Only the
students who did not do any of the assessment activities will be considered as
"not presented".

Honor marks
will be given priority in the first opportunity (June), in the second
opportunity (July) they may only be granted if have not been exhausted in June.

The
teaching-learning process, including assessment, refers to an academic course
and, therefore, will restart as new with every academic year, including all
activities and assessment procedures scheduled for that course.

In the case of justified circumstances, additional measures may be taken so that the student can pass the subject, such as flexibility in the delivery date of exercises and in practice schedules.


Sources of information
Basic Deublein, D. and Steinhauser, A. (2008). Biogas from waste and renewable resources: an introduction. Wiley-VCH
Henze, M. et al. (2008). Biological Wastewater Treatment. IWA Publishing
Kennes, C. and Veiga, M.C. (2001). Bioreactors for waste gas treatment. Kluwer Academic Publishers
Metcalf and Eddy (1995). Ingeniería de Aguas Residuales. Tratamiento, vertido y reutilización.. Labor.
Davis e Masten (2005). Ingeniería y ciencias ambientales. McGraw-Hill
  • Henley EJ y Seader JD. Operaciones de separación por etapas de equilibrio en ingeniería química. Ed. Reverté, Barcelona (1988).
  • Ramalho, R. S. Tratamiento de aguas residuales. Ed. Reverté. Barcelona (1996).
  • Metcalf and Eddy. Ingeniería de Aguas Residuales. Tratamiento, vertido y reutilización. Labor. Barcelona (1995).
  • Henze, M., van Loosdrecht, M. C. M., Ekama, G.A. and Brdjanovic, D.. Biological Wastewater Treatment. IWA Publishing (2008).
  • APHA, Standard Methods for the Examination of Water and Wastewater. 20th ed., Washington DC, USA. (1998).
  • Kennes, C. and Veiga, M.C. Bioreactors for waste gas treatment. Kluwer Academic Publishers (2001).
  • Deublein, D. and Steinhauser, A. Biogas from waste and renewable resources: an introduction. Wiley-VCH, (2008).
  • Anderson, W.C. Innovative site remediation technology (Vol 1-8), American Academy of Environmental Engineers, (1993).
Complementary


Recommendations
Subjects that it is recommended to have taken before
Chemical Engineering/610G01033

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.