Identifying Data 2021/22
Subject (*) Physics Code 610G02002
Study programme
Grao en Bioloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
First Basic training 6
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Física e Ciencias da Terra
Coordinador
Domínguez Pérez, Montserrat
E-mail
montserrat.dominguez.perez@udc.es
Lecturers
Domínguez Pérez, Montserrat
Martín Pérez, Jaime
Segade Zas, Luisa Maria
E-mail
montserrat.dominguez.perez@udc.es
jaime.martin.perez@udc.es
luisa.segade@udc.es
Web
General description A materia de Física prográmase co fin de que os alumnos adquiran unha serie de coñecementos sobre os conceptos físicos básicos e a súa aplicabilidade na Bioloxía, os cales serán necesarios para abordar o estudo doutros campos e materias dentro da titulación.
Contingency plan 1. Modificacións nos contidos
Dos contidos da materia eliminaríanse os temas de Radiación e radioactividade e o tema de Nocións de Óptica.
2. Metodoloxías
*Metodoloxías docentes que se manteñen
- Actividades iniciais
- Análise de fontes documentais
- Solución de problemas (computa na avaliación)
- Traballos tutelados (computa na avaliación)

*Metodoloxías docentes que se modifican
- Proba obxectiva: ao longo do curso, realizaranse dúas probas parciais (contidos teóricos e resolución de problemas) a través do Campus Virtual que supoñerán o 20% da nota total. Cada unha destas probas supoñerá ata un máximo de 1 punto (10% cada proba). Ao final de cada proba, os estudantes deberán enviar un arquivo pdf adxunto xustificando as súas respostas. O exame final (oportunidade de xuño e/ou xullo) supoñerá o 50% da nota total. Para ter opcións a superar a materia a suma das probas parciais e o exame final deberá sumar un mínimo de 4 puntos sobre 10 puntos. As notas das probas parciais conservaranse para a oportunidade de xullo.
- Sesión maxistral: o contido detallado dos bloques temáticos subirase ao Campus Virtual e/ou compartirase polos grupos de Teams segundo as indicacións que os docentes encargados da materia lle dean a cada grupo (Grupo da Mañá, Grupo de Inglés e Grupo da Tarde). Complementariamente o contido básico dos bloques temáticos será abordado empregando ou ben vídeos con presentacións explicativas, ou ben con videoconferencias dos distintos temas a través do Teams.
No caso de que as aulas sexan presenciais pero se supere o aforo da aula asignada á materia, a Facultade prevé a asignación de dúas ou máis aulas e a impartición das clases será a través de Teams para o alumnado que non estea na aula co docente. No caso das actividades prácticas, os grupos desdobraranse para adaptarse á capacidade do laboratorio.
- Prácticas de laboratorio: levaranse a cabo de forma individual realizando un tratamento e análise de datos experimentais. Aos estudantes facilitaráselles o guión de cada práctica e os datos que terán que empregar para a súa resolución. Cada estudante deberá entregar, dentro do prazo establecido, unha memoria que recolla o traballo realizado e o tratamento pertinente dos datos. Con anterioridade a estas actividades, está prevista unha sesión na cal explicarase a forma de realizar as prácticas e a expresión dos resultados en forma numérica e/ou gráfica, coa indicación das incertezas.

3. Mecanismos de atención personalizada ao alumnado
- Correo electrónico: diariamente. De uso para facer consultas, solicitar encontros virtuais para resolver dúbidas e facer o seguimento das prácticas de laboratorio e os traballos tutelados.
- Campus virtual: semanalmente. Empregarase como medio de información e comunicación co alumnado, subindo materiais de interese para o desenvolvemento da materia. Tamén se empregará para organizar as entregas das actividades derivadas das prácticas e os traballos tutelados.
- Teams: 2 sesións semanais en gran grupo para o avance dos contidos teóricos e 1 sesión semanal con cada grupo pequeno para a resolución de exercicios e casos prácticos na franxa horaria que ten asignada a materia no calendario de aulas da facultade. Tamén servirá de vía para a resolución de dúbidas das distintas actividades da materia.

4. Modificacións na avaliación
- Prácticas de laboratorio (15%): a asistencia á sesión previa e a realización da memoria que recolla o traballo de prácticas realizado e o tratamento e análise pertinente dos datos será condición necesaria para ser avaliado. Polo tanto, estas actividades serán de carácter obrigatorio.
- Proba obxectiva: a valoración da proba obxectiva sobre os temas teóricos e a resolución de exercicios supoñerá o 70% da cualificación final. Esta cualificación corresponderase un 20% das probas parciais e un 50% da proba final. A suma de todas as probas deberá acadar un mínimo de 4 puntos (sobre 10) para ter opcións a superar a materia.

*Observacións de avaliación:
Mantéñense as mesmas que figuran na guía docente, agás que:
Nas Prácticas de laboratorio será obrigatoria a asistencia á clase previa e a entrega da memoria de prácticas para poder superar a materia.

5. Modificacións da bibliografía ou webgrafía
No se realizarán cambios. Os alumnos disporán de todos os materiais de traballo da materia no Campus Virtual e poderán consultar gran parte da bibliografía en formato electrónico.

Study programme competencies
Code Study programme competences
A22 Describir, analizar, avaliar e planificar o medio físico.
A26 Deseñar experimentos, obter información e interpretar os resultados.
A30 Manexar adecuadamente instrumentación científica.
A31 Desenvolverse con seguridade nun laboratorio.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B4 Traballar de forma autónoma con iniciativa.
B5 Traballar en colaboración.
B8 Sintetizar a información.
B10 Exercer a crítica científica.

Learning aims
Learning outcomes Study programme competences
To know the basic concepts of the different parts of Physics, such as: Mechanics, Fluids, Waves, Thermodynamics, Electromagnetism and Optics. A22
B2
To know how to relate the basic concepts of Physics to biological phenomena. A26
B10
To apply the theoretical knowledge acquired to the resolution of basic physical problems, mainly focused on resolving biological phenomena. A22
A26
B1
B2
B8
To know and to use the methodologies, bibliographic sources and technical concepts corresponding to Physics, applying the scientific method to its study. A30
B3
B4
To learn some of the basic Physics Laboratory techniques, such as measuring fundamental physical magnitudes (density, viscosity, surface tension, specific heat...). A26
A30
A31
B5
B8

Contents
Topic Sub-topic
Introduction to Physics


Physical Magnitudes
Measurements, dimensions and units


Vector Analysis Vectors. Types. Components
Operations with vectors
Momentum of a vector
Kinematics Movement. Characteristics
Speed and acceleration
Types of movements.
Dynamics Newton Movement Laws
Linear momentum
Gravity Force
Types of forces
Friction
Statics Principles of Statics
Center of mass
Moment of inertia. Steiner Theorem
Biomecanics Muscular strength. Momentum
Scale Laws. Metabolic Rate
Mecanical Energy. Conservation Work and Power
Kinetic and Potential Energy
Energy Conservation
Deformed Media Elasticity. Hooke's Law
Traction. Young's Module
Lateral Contraction. Poisson Coefficient
Compresibility Coefficient
Flexion
Cutting
Torsion
Ideal Fluids. Statics and Dynamics Density
Pressure. Magnitudes, unities and measurement
Fundamental Equation of Hydrostatics
Pascal and Archimedes Principles
Continuity Equation
Bernouilli`s Theorem. Aplications
Real Fluids Viscosity
Fluids Flow modes
Reynolds' Number
Laminar Regime. Poiseuille Equation
Viscosity Measurement. Ostwald Viscometer
Movement of solids through fluids

Surface Phenomena Molecular Forces. Surface Tension
Laplace's Law
Capillarity. Jurin's Law
Harmonical and Wavy Movements Simple Harmonic Movement. Pendulum
Wave Types
Wavy Movement Equation
Speed of wave propagation
Energy and intensity of the wavy movement
Doppler Effect
Acoustics Speed of Sound
Noise Quality
Sound Sensation
Reverberation
Ultrasounds
Thermodynamics and temperature Thermodynamical Systems
Thermodynamical variables
Thermodynamical processes
Zero Principle of Thermodynamics. Temperature.
Temperature Measurement. Escales and thermometers

Gas Study Ideal Gases. Laws
Equation of state
Real Gases. Van der Waals' Equation
Kinetic Theory of Gas
Heat and work Thermodynamic work
pV Diagram
Effects of heat on matter
Heat transfer
First Principle of Thermodynamics First Principle of Thermodynamics
Internal Energy
Ideal gas transformations

Second Principle of Thermodynamics
Thermal Machine Concept
Two forms for the Second Principle of Thermodynamics
Carnot Cicle
Entropy Concept. Entropy Calculation
Concepts on electricity and bio-magnetism Electrical Charge. Coulomb's Law
Electrical Field and Potential
Dipoles
Capacity. Capacitors
Current Intensity. Ohm's Law
Electrical resistivity and conductivity
Electrical current Energy
Magnetic Forces
Laplace's and Faraday's laws
Alternating current


Radiation and radioactivity De Broglie's relationship
Bonding Energy. Mass Loss
Fision and fusion
Radiactivity. Atom Splitting
Physical and Biological Dosimetry
Biological Effects of Radiation
Notions on Optics Electromagnetic waves
Lens and Mirrors
Optical Instruments

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Introductory activities B1 1 0 1
Document analysis A26 B8 0 3 3
Laboratory practice A26 A30 A31 B5 B8 14 14 28
Problem solving A22 A26 B1 B2 B8 8 24 32
Objective test A22 A26 B2 B10 4 0 4
Guest lecture / keynote speech A22 B1 B3 B10 28 42 70
Supervised projects B3 B4 B5 B8 B10 0 9 9
 
Personalized attention 3 0 3
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Introductory activities The first day of class the teacher will facilitate the program of the subject, the methodology and the assessment criteria, as well as a detailed calendar of each of the activities. This information will remain available for the student in the Moodle platform.
Document analysis We will inform the students of the necessary bibliographical sources, both for problems, theory and assisted assignments. Thus, they will be able to revise and build on the aspects explained in the classroom. The individual tutorial sessions will also help to better understand the contents of the course.
Laboratory practice Along the six Laboratory sessions students will carry out different practices. A guide for each practice will be given to the student, and they will have all the necessary materials in order to complete the task. At all times students will be assisted by the teacher to resolve any doubts and receive assistance if necessary.
At the end of laboratory course, each student will present a report including the completed tasks and the obtained results.
Prior to the Laboratory sessions there will be a room session to explain the basis of experimental uncertainties and graphical representations.
Problem solving After each lesson, there will be Seminars (with a reduced number of students) in order to apply the studied concepts through solving problems. The proposed problems for each lesson will be given to the students beforehand as bulletins. There, we will include the numerical solution of each problem, so students can assess their own skills. Those bulletins will be of two different types: some of them are general, the same for all students of the three groups, and some are complementary, specific for each seminar group. Not all problems will be completely resolved in the Seminars, but only the more difficult ones.
Objective test There will be two written exams about the theory and numerical problems saw in classroom. The first one at the middle of the course and the second one at the end. The students who pass each of those exams will have that part of the subject passed for the Final exams of June (and July).
Guest lecture / keynote speech The basic content of the different parts of the course will be explained by the teacher in these sessions, trying to involve students in the learning process. The materials used at each session will be available in the Moodle platform after the session.
Supervised projects The students will be able to complete complementary supervised projects on a voluntary basis. These tasks will conducted in pairs and they will be focused on applications of Physics to Biology.

Personalized attention
Methodologies
Document analysis
Laboratory practice
Supervised projects
Description
Students will be attended individually to help them to understand and resolve all problems related with the subject they can have, including: bibliography, problems of the bulletin, the complementary work... .

STUDENTS WITH ACADEMIC DISPENSATIONS: these students will receive a specific orientation to schedule their tasks weekly.

Assessment
Methodologies Competencies Description Qualification
Laboratory practice A26 A30 A31 B5 B8 The total score of the practices will represent 1.5 points on the final grade and the evaluation will be based on the submitted report.
Attendance to the introductory lecture and to all laboratory sessions is a necessary condition to be evaluated, therefore, they are mandatory.
Practices will be considered passed when reaching a minimum of 0.7 points out of 1.5.
15
Problem solving A22 A26 B1 B2 B8 Participation in the Seminars will represent 0.5 points on the final mark.
5
Objective test A22 A26 B2 B10 The maximum qualification of the theoretical tests carried out during the course is 21% of the final mark, while the corresponding to the exercises tests represents 49% of the final mark.
The student must achieve a minimum sum of 4 points out of 10 (theory and exercises) in order to pass the course.
70
Supervised projects B3 B4 B5 B8 B10 The score of the supervised project will be a maximum of 1 point on the final grade.
10
 
Assessment comments

STUDENTS QUALIFIED AS "NOT PRESENT":

The NP (not present) qualification will be given to those students who do not participate in all Laboratory sessions, and who have not attended the final exams. Students who sucessfully complete the laboratory course but choose not sit for the exam will not pass the course. All pass qualifications received in the course (laboratory, seminars, etc.) will be kept for the second opportunity (July).

LAB PRACTICES:

Sinceattendance to laboratory sessions is required to pass the course, failure to attend without justification (see the list of valid reasonsin Article 12 of the "Normas da avaliación, revisión e reclamación dascualificacións dos estudos de Grao e Mestrado Universitario" vixente)involves the following:

a) Missing one of the sessions without justification implies a 50% reduction of the final grade,

b) Missing more than one session implies failing the course.

Labpractices will be performed exclusively during the official schedule.

STUDENTS WITH ACADEMIC DISPENSATIONS:

Theevaluation will be distributed as follows:

a) The labpractices represent a maximum value of 1.5 points. They are mandatory and canbe made within the official calendar on any morning or afternoon shift. In thecase of unexcused absence, the same criteria as described above for full-time studentswill be applied.

b) The supervisedproject represents a maximum of 1 point. It is optional.

c) Theobjective test represents a maximum value of 7.5 points. The same criteria as described for full-timestudents will be applied, proportionally.


STUDENTS WITH ACADEMIC ADAPTATIONS:
In the case of students with specific learning needs, and in accordance with the indications of the University Unit for Attention to Diversity (ADI), the teacher will adapt the continuous and compulsory assessment activities so that the student can pass the subject.

FAILING MARK:

If a student, having an average qualification higher than 5, fails the minimum qualification in any activity, they will have a qualification of 4.5, i.e., fail.

EARLY CALL FOR DECEMBER

The teaching guidethat will be applied to students who apply for the early December call will bethat of the current academic year.


Sources of information
Basic Kane y Sternheim (1994). Física. Barcelona. Reverté.
Cussó, López y Villar (2004). Física de los procesos biológicos. Barcelona. Ariel
Jou, Llebot y Pérez (1994). Física para las ciencias de la vida . Barcelona. Mc. Graw- Hill
Young and Geller (2007). Sears and Zemansky's College Physics. Pearson International Edition

Complementary Hewitt, Suchocki and Hewitt (2010). Conceptual Physical Science Explorations. Pearson International Edition
Hewitt, Suchocki y Hewitt (2016). Física conceptual. Pearson
Tippler, P (2005). Fisica I y II. Barcelona. Reverté
Ortuño (1996). Física para biología, medicina, veterinaria y farmacia . Barcelona. Crítica
Serway, R.A. and Jewitt, J.W. (2014). Physics for Scientist and Engineers. USA. Cengage Learning
Wilson, J.D. and Hernández-Hall, C.A. (2015). Physics Laboratory Experiments. USA. Cengage Learning
Burbano y Burbano (1991). Problemas de Física . Barcelona. Mira
Young, H.D. and Geller, R.M. (2007). Sears and Zemansky's College Physics. USA. Pearson
Feynman, R. P. (2005). The Feynman lectures on physics. Vol. I, II and III. Addison-Wesley


Recommendations
Subjects that it is recommended to have taken before
Mathematics/610G02003

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

GREEN CAMPUS PROGRAMME FACULTY OF SCIENCE

To help achieve animmediate sustainable environment and to comply with point 6 of the"Faculty of Science Environmental Statement (2020)" the documentarywork to be carried out in this area will:

   a) They shall berequested mostly in a virtual format and in electronic form.

   b) If on paper:

       - Plastics shall not be used.

       - Double-sided printing will be carried out.

       - Recycled paper will be used.

       - Drafting will be avoided.

    



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.