Identifying Data 2022/23
Subject (*) Biochemistry and Molecular Biology Code 610G02013
Study programme
Grao en Bioloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Third Obligatory 6
Language
Spanish
English
Teaching method Face-to-face
Prerequisites
Department Bioloxía
Coordinador
Freire Picos, María Ángeles
E-mail
maria.freirep@udc.es
Lecturers
Barreiro Alonso, Aida Inés
De Castro De Antonio, María Eugenia
Freire Picos, María Ángeles
Rodriguez Belmonte, Esther
E-mail
aida.barreiro@udc.es
m.decastro@udc.es
maria.freirep@udc.es
esther.belmonte@udc.es
Web http://ciencias.udc.es/bcm
General description A Bioquímica e a Bioloxía Molecular abordan o estudo da vida ó nivel das moléculas e das interaccions que se dan entre elas. Hoxe en día estos estudos son a base de moitas investigacions (dende investigación biomédica a aspectos moleculares aplicables ó estudo de poboacións naturais, aplicacions agrícolas, medio-ambientais, etc). Nesta asignatura afondarase en aspectos moleculares básicos para a vida dende la síntese de mRNA e proteínas ata a regulación da expresión xénica mediada por sistemas de transducción de señais. Ista asignatura do 3º curso do grado en Bioloxía busca tanto aumentar os coñecementos do alumnado na materia como desenrolar a súa capacidade de relacionar información e aplicala cara á resolución de distintos casos e a proposta de experimentos ou pequenos proxectos de investigación.

Study programme competencies
Code Study programme competences
A8 Illar, analizar e identificar biomoléculas.
A12 Manipular material xenético, realizar análises xenéticas e levar a cabo asesoramento xenético.
A17 Realizar bioensaios e diagnósticos biolóxicos.
A27 Dirixir, redactar e executar proxectos en Bioloxía.
A29 Impartir coñecementos de Bioloxía.
A30 Manexar adecuadamente instrumentación científica.
A31 Desenvolverse con seguridade nun laboratorio.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B4 Traballar de forma autónoma con iniciativa.
B5 Traballar en colaboración.
B7 Comunicarse de maneira efectiva nunha contorna de traballo.
B10 Exercer a crítica científica.
B11 Debater en público.
B13 Comportarse con ética e responsabilidade social como cidadán e como profesional.

Learning aims
Learning outcomes Study programme competences
The approach of the Master Classes is to improve the knowledge and the ability of reflection on a discipline that also, once in the professional field, will demand a good praxis and adhere to ethical principles. The Laboratory Classes are more focused on the expertise on know how to do and how to be, related to the field of the Biochemistry and Molecular Biology. A8
A12
A17
A27
A29
A30
A31
B1
B2
B3
B4
B5
B7
B10
B11
B13

Contents
Topic Sub-topic

1.-Basal Transcription

RNA polymerases, core promoter and general transcription factors.Transcription mechanism: initiation, elongation and termination. Methodology to study: transcription start site selection, transcriptional termination and interactions nucleic acids-proteins.

2.-Regulated transcription and chromatin involvement in transcriptional regulation

Activators and repressors. DNA binding domains: DNA-proteins interactions. Chromatin remodeling complexes. Acetilation, deacetilation and other histones modifications in the regulation of gene expression. Techniques to study transcriptional regulation. Regulation examples of specific genes

3.-RNA processing and coordination of co-transcriptional events in eukaryotes

RNA cleavage and polyadenylation. RNA splicing. Processing of ribosomic and transferent RNA

4.-RNA as regulator of gene expression

RNA edition. Control of mRNA quality. Function of snRNA and transcriptional regulation. sncRNAs and the gene silencing mechanism. Antisense RNA in the translational regulation and applications of RNA. RNomics aspects

5.-Protein Translation

General aspects. Ribosomes. Translation mechanism: Initiation, elongation and termination. Differences in eukaryotes. Translation in mitochondria. Translational inhibitors.
6.-Protein Processing Postranslational modifications of proteins. Folding: Chaperones and Prions. Ubiquitination and SUMOilation. Programed degradation: Proteasome

7.-Protein Transport

Cotranslational and postranslational translocation. Classification and distribution of new synthesized proteins. Traffic nucleo-cytoplasm. Transport regulation and final destiny of proteins in the cell.
8.-Basics of Cell Signaling
Classification of intercellular communication. Stages of intracellular signaling. Organization of signaling and pathways. Signaling molecules: types and functions.
9.- Reception of external signals and intracellular transduction Membrane and intracellular receptors: types and mechanisms of activation. Intercellular Messenger substances or Second Messengers, protein kinase cascades and signal transduction to nucleus.
10.- Examples of control mechanisms and coordination of cell physiological activities Cell Growth and Proliferation: regulation of cell cycle, apoptosis and cancer. Cell Senescence Signaling.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Laboratory practice A8 A12 A17 A27 A30 A31 B1 B2 B3 B4 B5 B7 B10 B13 15 22.5 37.5
Problem solving A29 B1 B2 B3 B4 B5 B7 B10 B11 B13 7 17.5 24.5
Guest lecture / keynote speech A29 B2 B3 B4 B7 B10 B11 B13 28 0 28
Document analysis A29 B1 B3 B5 B7 B10 B11 B13 1 3 4
Mixed objective/subjective test A29 B2 B3 B7 B10 B13 2.5 50 52.5
 
Personalized attention 3.5 0 3.5
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Laboratory practice Focused on the study of gene expression, with the use of databases, with the analysis of reporter genes expression and/or with the study of protein expression.
Problem solving This section will include the approach and resolution of problems of different aspects in small groups of students, combining the methodologies of problem-based learning and collaborative work.
Guest lecture / keynote speech Oral Presentation complemented with audiovisual media to transmit knowledges and provide the learning. Besides it will improve the participation of the students.
Document analysis Read and comprenhesion of research papers. Searches of information, analysis, discussion, participation of all group components documents elaboration and conclussions. Defense in seminars.
Mixed objective/subjective test It will be used for the evaluation of the knowledge, skills, attitudes, and so, acquired by the student along the course, and will include different types of questions: multiple answer, short, etc.

Personalized attention
Methodologies
Laboratory practice
Problem solving
Guest lecture / keynote speech
Document analysis
Description
The tasks to perform by the student will be guided by the Professor. It is important the regular attendance to Tutorials with the Professor, who will help to monitor the progress of the students.

The specific tutorial Schedule for students will be given at the begining of the course. Apart from that, students can e-mail the professors to solve specific questions or (with the teacher´s agreement) to make tutorial appointments or by Teams.

Assessment
Methodologies Competencies Description Qualification
Laboratory practice A8 A12 A17 A27 A30 A31 B1 B2 B3 B4 B5 B7 B10 B13 LABORATORY CLASSES: The assistance is mandatory. The students will interpret the obtained results. Besides they will present a work that will include a small research project based on the results in the practical course and an exam.
25
Mixed objective/subjective test A29 B2 B3 B7 B10 B13 FINAL EXAMINATION: The knowledges obtained by the students in the Master and Small Group Classes will be evaluated in a final exam.
40
Problem solving A29 B1 B2 B3 B4 B5 B7 B10 B11 B13 Resolution of problems, student's work in Reduced Groups: exercises, seminars (as indicated in document analyses) and possibility of small exams.
20
Document analysis A29 B1 B3 B5 B7 B10 B11 B13 Small group activity: Activity of searching and handling of scientific information that will be used to elaborate activities of science dissemination, with a class exposition in small groups, and with an ending debate. The scientific rigor of information (group work), the quality of visual presentation (group work), the fluidity and clarity of oral exposure (individual work) and responsiveness (individual work) will be evaluated.
15
 
Assessment comments

.- In order to add all the qualifications and pass this subject it will be mandatory to acquire the minimum scores in the three evaluable parts INDEPENDENTLY: Activities (Problem solving / Document analysis), Practical Classes in the Laboratory and Objective Probe (or Final Examination).
The oficial final exams in June and in July will be presentially, unless in case of pandemic situation in which will use the Moodle platform only.

The continous assesments, previous to the oficial opportunities, will also be on line. Two partial exams will be issued.- For Final Qualifications or ACTAS (on any of the 2 opportunities, JUNE or JULY): The marks of the Objective Probe, Laboratory Practices, and Seminars will be added only if all of them reach 45% of their value. If this percentage is not reached, the final grade that will appear in ACTAS will be 4.

.-In the Final Exam of the 2nd Opportunity_(July), the student will be able to recover only the
theoretical. It will not be an exam for the Practical Part in this 2º Opportunity.

.-The attendance to Practical Laboratory Classes is a mandatory condition to be evaluated. Failure
to attend classes without a properly justified reason means failing the subject. The students who had passed the Practical Part in the two previous academic years may apply for a request for his validation as overcome (PASS). 

 .- The students that do not show up in any of the two official examination dates will obtain a NOT
PRESENTED in the Final Grades (ACTAS).

.-According to the rule of qualifications and records in Degrees and Masters, the Quality Committee of the Faculty of Sciences agreed to the recommendation to concede the “Honors Qualification” to those students who obtained the highest marks in the 1st Opportunity.

.-For students with part-time dedication or with an exemption of class assistance, in June and July, there will be a specific exam for overall assessment.

.- Exceptionally, in the case of those students that, for duly justified reasons, are not able to
perform all continuous assessment tests or evaluable activities, the professors will take their deems for appropriate measures.
.-Students with recognition of part-time dedication and academic exemption for attendance both in the end-of-term opportunity and in the second opportunity will take into account, for the calculation of the overall grade, the grade obtained in the theoretical exam and the corresponding practical part (see above format of both exams), representing these 75% and 25% of the final grade, respectively.


Sources of information
Basic Lodish, Berk, Matsudaria, Kaiser et al., (2008). Biología Celular y Molecular. Ed. Médica Panamericana
Karp G. (2011). Biología Celular y Molecular. Conceptos y experimentos. McGraw-Hill Interamericana Eds., S.A. de C.V., traducción de la 6ª ed. de Cell and Molecular Biology
Elliot, W.H. & Elliot, D.C. (2002). Bioquimica y Biologia Molecular. Ariel, S.A.
Stryer,L, Berg, J.M. %Tymoczko, J.L. (2013). Bioquímica: con aplicaciones clínicas. Ed. Reverté, 7ª Ed.
Lewin B. (2011). Genes X. Jones and Bartlett Publishers, LLC
Bruce, Alberts [et al.]. (2008). Molecular biology of the cell. New York : Garland Science, 5th ed.
Lodish, Berk, Krieger, Kaiser et al., (2013). Molecular Cell Biology. WhFreeman
Whitford, D. (2005). Proteins: Structure and Function. John Wiley & Sons, Ltd.
Meister G. (2011). RNA Biology. Wiley-VHH
Herráez, A. (2012). Texto inlustrado de Biología Molecular e ingeniería genética. Elsevier
In the Moodle we Will update links to web pages and other bibliographic sources. Contingency plan: no modifications since they are included in the Moodle.
Complementary Krauss, Gerhard. (2008). Biochemistry of signal transduction and regulation.. Weinheim : Wiley-VCH. 2nd ed.
Rhoads R. (2010). miRNA Regulation of the translational machinery. Springer
Dalbey, R.E. & von Heijne, G. (2002). Protein targeting, transport & translocation. Academic Press
Meyers, R.A. (2007). Proteins: from analytical to structural genomics (Volume I and II). Wiley-VCH Verlag GmbH & Co.


Recommendations
Subjects that it is recommended to have taken before
Bioquímica I/610212101
Bioquímica II/610212202
Molecular Genetics/610G02020

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Fundamentos Bioquímicos de Biotecnoloxía/610212620

Other comments

.-It is recommended to attend both group and individual tutoring to get best results.

Green Campus Science Faculty Program

To contribute to achieving an immediate sustainable environment and comply with point 6 of the "Environmental Declaration of the Faculty of Sciences (2020)", the documentary work carried out in this area:

a. They will be requested mainly in virtual format and computer support.

b. To do on paper:

- Plastics will not be used.

- Double-sided prints will be made.

- Recycled paper will be used.

- Drafts will be avoided.




(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.