Identifying Data 2020/21
Subject (*) Chemistry: Structure and Bonding Code 610G04005
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
First Basic training 6
Language
Galician
Teaching method Hybrid
Prerequisites
Department Química
Coordinador
Sanchez Andujar, Manuel
E-mail
m.andujar@udc.es
Lecturers
Platas Iglesias, Carlos
Sanchez Andujar, Manuel
E-mail
carlos.platas.iglesias@udc.es
m.andujar@udc.es
Web
General description O principal obxectivo docente desta materia é a de proporcionar ao alumnado as competencias e os coñecementos a un nivel básico sobre conceptos, principios e teorías que describen a estrutura do átomo e da materia, o coñecemento dos diferentes modelos de enlace químico, das forzas intermoleculares e dos estados de agregación da materia. Todos estes aspectos son fundamentais para posteriormente poden afondan noutros aspectos máis avanzados como son as propiedades dos materiais e para poder manipular e deseñar entidades químicas e comprender as súas reaccións e interaccións. Polo tanto, os contidos desta materia aportan coñecementos de base que son fundamentais para poder cursar outras materias do grao en Nanociencia e Nanotecnoloxía.
Así mesmo os coñecementos e competencias desta materia son complementados polas materias Química: Equilibrio e Cambio e Laboratorio Básico integrado do primeiro curso do grao en Nanociencia e Nanotecnoloxía. Estas tres materiais constitúen a formación básica do alumnado en Química.
Contingency plan 1. Modificacións nos contidos

En principio os contidos mantéñense na súa totalidade. Pero no caso de ser necesario e por mor de causas de forza maior poderá optarse por unha presentación máis xeral dos mesmos, pero en calquera caso cubrirá todos aqueles aspectos máis relevantes da materia.

2. Metodoloxías
*Metodoloxías docentes que se manteñen
As metodoloxías manteranse pero pasarán a realizarse na “Modalidade on-line” e dicir empregando as ferramentas das TIC que ten a disposición a Institución. No caso de que parte do alumnado non puidese conectarse e seguir as clases en tempo real, empregaranse medios asincrónicos (correo electrónico, gravacións das sesión expositivas, titorías máis personalizadas...).

*Metodoloxías docentes que se modifican

As probas obxectivas serán probas on line que se realizaran mediante Moodle ou ferramentas equivalentes e facendo un seguimento das mesmas por Teams.

3. Mecanismos de atención personalizada ao alumnado

O alumnado será titorizado mediante a plataforma Teams ou mediante o correo electrónico corporativo.

4. Modificacións na avaliación

Se todo o alumnado puidese continuar coa docencia non presencial sen dificultade avaliarase do mesmo xeito que na docencia presencial.
O alumnado que non poda seguir as actividades on line sincrónicas será avaliado polas actividades equivalentes realizadas de maneira asincrónica.


*Observacións de avaliación:

5. Modificacións da bibliografía ou webgrafía

Non hai modificacións na bibliografía/webgrafía

Study programme competencies
Code Study programme competences
A1 CE1 - Comprender los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
A2 CE2 - Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
B1 CB1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
B9 CG4 - Trabajar de forma autónoma con iniciativa.
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C7 CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a un desarrollo sostenible ambiental, económico, político y social.
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad
C9 CT9 - Tener la capacidad de gestionar tiempos y recursos: desarrollar planes, priorizar actividades, identificar las críticas, establecer plazos y cumplirlos

Learning aims
Learning outcomes Study programme competences
To know the main particles that form the matter, from the point of view of the Chemist A1
A2
C8
Know the main atomic models and their application to the study of periodic properties. A1
A2
B1
B3
C9
Know the periodic table of the elements and properties of the atoms according to their position in the same. A1
A2
A3
B6
B8
C3
Know the main bonding models and their application to the different types of chemical species. A1
A3
B1
B6
B8
C3
C9
Know the characteristics of the different states of matter, the way in which some of their properties are obtained, the theories used to describe them, and the changes of state. A1
A3
B1
B7
B9
C7
Formulate and name simple inorganic and organic substances. A1
B1
B3
C3
C7

Contents
Topic Sub-topic
Introduction to Nanoscience and Nanotechnology Definition of nanoscience, nanotechnology and nanomaterials.
Nanoscale: the importance of size
The multidisciplinary nature of nanoscience and nanotechnology.
Nanomaterials Classification
Pioneers in nanoscience and nanotechnology
Formulation and nomenclature Formulation and nomenclature of organic and inorganic species
The structure of matter and particle models Matter as set nucleus and electrons. Rutherford atomic model. Bohr atomic model for the hydrogen atom. Limitations of the Bohr atomic model. Uncertainty Principle
The wave mechanical model for the hydrogen atom De Broglie's hypothesis. Stationary wave equation for Hydrogenoid System. Orbital functions. Orthonormality solutions to the equation and quantum numbers n, l ml. Electron energy Hydrogenoid System. Meaning of "Orbital Function". Comparison between models of Bohr and Schrödinger. The wave functions. Graphical representation of the orbitals
The wave mechanical model for polyelectronic atoms The wave equation for an atom with more electrons. Orbital model approach. Determination of the effective nuclear charge. Slater rules. The energy of the orbitals of the electron atoms. The electron spin quantum number. The Pauli exclusion principle. Electronic configurations
Periodic Table and periodic properties of the elements Electronic configuration and periodic table. Periodicity of atomic properties
Introduction to bonding models The wave equation for polynuclear systems. Models bond between atoms. Link models adapted to the types of chemicals
Lewis Theory Structure and properties of molecular substances. Lewis model. Bond order and bond strength and longitude. Resonance. Molecules that do not meet the octet rule. Limitations of the theory of Lewis
Valence-Shell Electron-Pair Repulsion Theory The theory of pair repulsion electron valence shell. Application of the model. Application of the model species with more than one central atom
Valence Bond Theory VTE in diatomic molecules. The model of "Electronic Cement". The valence bond model. Orbital hybridization. Resonance. Polar covalent bonds. The polarity of the bond in the VTE. Polar covalent bond strength
Intermolecular Forces The absolute temperature scale. Solids, liquids and gases. Van der Waals force. Hydrogen bonds
Covalent Solids Covalent solids. Some solid covalent structures
Structure and bonding in metals Metals: Property characteristics. Structure of Metals. Electronic Cement. The metallic bond: electron sea model
Structure and bonding in salts Definition and properties of salts. Structure salts. Ionic radii. A "Rule radios". Ionic bonding model. Calculation of the laticce energy. Covalent character of the bond in the salts. Electron density maps. Polarizing power and polarizability of the ions. Fajans rules. Consequences of participation in the covalent bond
Molecular Orbital Theory Limitations of VTE. the wave equation for polynuclear systems. Molecular orbitals of polar species. Delocalized systems. Treatment of the electronic structure of metals by TOM: Bands model. The pattern of bands applied to covalent solids and salts.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A2 A3 B1 32 56 88
Workshop A1 A2 A3 B3 B6 B7 B8 B9 C3 C7 C8 C9 6 12 18
Mixed objective/subjective test A1 A2 A3 B1 B7 B8 C9 3 3 6
Objective test A1 A2 A3 B1 B3 B6 B7 B8 B9 C9 1 1 2
Problem solving B3 B6 B7 B8 B9 C7 C9 9 27 36
 
Personalized attention 0 0 0
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech In the classes will review the contents of the relevant issues, indicating their most important aspects, particularly those fundamental or more difficult to understand concepts to students. So that students can make the most of the class, the corresponding issue must be first read followed by responses a test to based on this reading. The completion of these tests will be essential in order to be qualified in classes and workshops problems related contents.
Workshop The workshops are designed as a set of eminently practical activities, carried out both in large group and small group, in which the student must participate actively. Its main objective is to complete and deepen the most relevant aspects and / or difficult to understand. They also resolve doubts about any aspect related to problem solving class and workshops, etc
Mixed objective/subjective test The test be held on the date set in the timetable agreed by the Faculty Board. It aims to contribute to the assessment of the level of skills acquired by students in the whole course.
Objective test Periodically, in classes, problem solving or workshops will conduct some short exercices both to assessing student achievement as the teacher's guidance on the issues learn in their class. Besides, this activity tends to encourage the student to perform continuously the effort required to study this subject.
Problem solving Problem solving will be in small group and will be dedicated to solving problems and questions raised in advance of the student so that it can work on them before the corresponding session. Periodically in these sessions, the teacher will supervise the work done, not only for assessment purposes, but also to provide adequate support to the study of matter.

Personalized attention
Methodologies
Problem solving
Workshop
Description
The teaching methodology proposed is based on the student's work, which becomes the main protagonist of the teaching-learning process. For the student to obtain optimal performance of their effort it is that there is a continuous interaction and closer student-teacher, so that the latter can lead the first in this process capital. This interaction will especially in workshops and problem solving sessions. Through student-faculty interaction, as well as the different evaluation activities will be determined to what extent the students reached the competency targets set in each unit, and determine students who need personalized attention through individualized tutoring. Therefore, periodically or teachers may call students to tutoring, to be held in the most convenient times for each student, with the intention of receiving the necessary guidance.
Regardless of the tutorials proposed by the teacher, the student may attend tutoring at his own request, as often as desired, and the time that is most suitable.
According to the ""norma que regula o réxime de dedicación ao estudo dos estudantes de grao na UDC" (Art.3.b e 4.5) and ""normas de avaliación, revisión e reclamación das cualificacións dos estudos de grao e mestrado universitario” (Art. 3 e 8b), students with recognition of part-time dedication and assistance exemption should be able to participate in a training methodology and associated teaching activities that would allow the achievement of the training objectives. Therefore, in the subject Chemistry: structure and Bonding, the percentage of exemption would be preset in a first interview with the students, taking into account once known their personal situations. At this point, students can participate in a personalized tutorial system for guidance and evaluation, with at least five individualized sessions, which will serve for the orientation of students in their autonomous work as well as for monitoring their progression during the course and evaluating the degree of competence development reached. Regarding this last point, the tutorials will serve to carry out those activities included in the Objective Test methodology and which correspond to a 25% of the final grade for the course.

Assessment
Methodologies Competencies Description Qualification
Problem solving B3 B6 B7 B8 B9 C7 C9 Problem solving and the workshops together will a maximum of 15 points total.
This activity will take into account student participation. Also could be evaluated some brief exercises that can be made in this class.
15
Workshop A1 A2 A3 B3 B6 B7 B8 B9 C3 C7 C8 C9 Problem solving and workshops, will evaluated with maximum of 15 points total.
This activity will take into account the participation and level of knowledge shown by the students. I could also take account some brief exercises that students can be made in class.
0
Mixed objective/subjective test A1 A2 A3 B1 B7 B8 C9 It will consist of questions to develop both as test questions, formulation and problems, similar to solved during course. It will celebrate in the end of semester 60
Objective test A1 A2 A3 B1 B3 B6 B7 B8 B9 C9 Periodically will some exercices of multiple choice or short answer according to what indicated in the methodology section will be made 25
 
Assessment comments

The rating is the sum of the following contributions:

- Mixed objective: up to 60 points

- Objective tests: up to 25 points

- problem solving and workshops: up to 15 points.

To pass the subject it will be necessary to get at least 50 points
between the different assessment activities (mixed testing, objective
testing, troubleshooting and workshops) and obtain a minimum score of 30
points (out of 60) in the mixed test in the firts and second
oportunity. If is not possible to achieve the minimum score in the mixed
test, although the average be greater than or equal to 50 points (out
of 100) will be listed as not passing matter (4.5).

Since the rating is based on the model of continuous assessment,
specifically assess student progression throughout the semester could be
added maximum of 1 point to the final grade.

Students who do not
participate in workshops and problem solvent will score zero points in
this section on two occasions or oportunities.

Students to be evaluated in the so-called "second chance" can only
obtain qualified with the maximun if the maximum number of these to the
corresponding course was not fully covered in the "first chance."

In
the case of exceptional circumstances objectivables and properly
justified, the professor may waive in whole or in part the student for
the continuous process. People in this circumstance must pass a specific
test that leaves no doubt on the achievement of the competences of the
subject.

For students with a part-time commitment and academic
exemption for attendance exemption, the assessment obtained in the
activities associated with the personalized tutoring system will
correspond to the evaluation of the objective test methodology, that is
to say with 25% of the final score. The remaining 75% of said final
grade will be determined through the results obtained by the student in
the mixed objective.


Sources of information
Basic Petrucci, R. H.; Herring, F. G.; Madura, J. D.; Bissonnette, C (2017). Química General. Madrid
Petrucci, R. H.; Herring, F. G.; Madura, J. D.; Bissonnette, C (2011). Química General. Madrid
Petrucci, R. H.; Herring, F. G.; Madura, J. D.; Bissonnette, C (2003). Química General. Madrid

Complementary j. Casabó i Gispert (1996). estructura Atómica y Enlace Químico. barcelona
Emilio Quiñoá Cabana; Ricardo Riguera Vega; José Manuel Vila Abad. (2006). Nomenclatura y formulación de los compuestos inorgánicos una guía de estudio y autoevaluación. Madrid
Emilio Quiñoá Cabana; Ricardo Riguera Vega; José Manuel Vila Abad. (2005). Nomenclatura y formulación de los compuestos orgánicos una guía de estudio y autoevaluación. Madrid


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously
Integrated Basic Laboratory/610G04004

Subjects that continue the syllabus
Chemistry: Equilibrium and Change/610G04008

Other comments

To successfully on this course, the student needs the knowledge of chemistry from the secondary school.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.