Identifying Data 2020/21
Subject (*) Crystallography and Symmetry Code 610G04006
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
First Basic training 6
Language
Spanish
Galician
Teaching method Hybrid
Prerequisites
Department Química
Coordinador
Platas Iglesias, Carlos
E-mail
carlos.platas.iglesias@udc.es
Lecturers
Bermúdez García, Juan Manuel
Esteban Gomez, David
Platas Iglesias, Carlos
Rodríguez Rodríguez, Aurora
Sanchez Andujar, Manuel
Señaris Rodriguez, Maria Antonia
E-mail
j.bermudez@udc.es
david.esteban@udc.es
carlos.platas.iglesias@udc.es
aurora.rodriguez@udc.es
m.andujar@udc.es
m.senaris.rodriguez@udc.es
Web
General description “Cristalografía e Simetría” é unha materia do segundo semestre do primeiro curso do Grao en Nanociencia e Nanotecnoloxía, que pertence ao Módulo de Formación Básica.
Con ela preténdese que os alumnos coñezan e aprendan a aplicar os fundamentos da simetría puntual e da simetría espacial, se familiaricen co mundo dos cristais, coas estruturas máis comúns dos sólidos cristalinos, coa difracción de raios-X como ferramenta de caracterización dos sólidos, así como coa relación da cristalografía e a simetría con outras disciplinas. Estes coñecementos e habilidades proporcionarán a base teórica e práctica necesaria para que o estudantado poda profundizar no mundo dos nanomateriais cristalinos e a súa caracterización por métodos difractométricos e espectroscópicos en posteriores materias do grao en Nanociencia e Nanotecnoloxía.
Contingency plan 1. Modificacións nos contidos

En principio, os contidos mantéñense na súa totalidade. No caso de ser necesario por causas de forza maior, poderá optarse por unha presentación máis xeral dos mesmos, que en calquera caso cubrirá todos os aspectos máis relevantes da materia.

2. Metodoloxías
*Metodoloxías docentes que se manteñen

As metodoloxías manteranse, mais pasarán a realizarse en “Modalidade on-line”, e dicir, empregando as ferramentas das TIC que ten a disposición a Institución. No caso de que parte do alumnado non puidese conectarse e seguir as aulas en tempo real, utilizaranse medios asíncronos (correo electrónico, gravacións das sesión expositivas, titorías máis personalizadas...).

*Metodoloxías docentes que se modifican

As probas obxectivas serán probas on-line que se realizaran mediante Moodle ou ferramentas equivalentes, facendo un seguimento das mesmas por Teams.

3. Mecanismos de atención personalizada ao alumnado

O alumnado será titorizado mediante a plataforma Teams ou mediante o correo electrónico corporativo.

4. Modificacións na avaliación

Se todo o alumnado puidese continuar coa docencia síncrona on-line sen dificultade, avaliarase do mesmo xeito que na docencia presencial.
O alumnado que non poda seguir as actividades on-line síncronas será avaliado polas actividades equivalentes realizadas de maneira asíncrona.


*Observacións de avaliación:
Non hai.

5. Modificacións da bibliografía ou webgrafía

Non hai modificacións na bibliografía/webgrafía

Study programme competencies
Code Study programme competences
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A5 CE5 - Conocer los rasgos estructurales de los nanomateriales, incluyendo las principales técnicas para su identificación y caracterización
A6 CE6 - Manipular instrumentación y material propios de laboratorios para ensayos físicos, químicos y biológicos en el estudio y análisis de fenómenos en la nanoescala.
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
A8 CE8 - Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de la instrumentación y de los productos y nanomateriales.
B4 CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C7 CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a un desarrollo sostenible ambiental, económico, político y social.
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad

Learning aims
Learning outcomes Study programme competences
Identify the main crystal forms, structures and systems. A3
A5
A7
B6
B7
B8
C3
C8
Differentiate the main elements of symmetry and their nomenclature. A5
B4
C3
Recognize the fundamentals of diffraction. A3
A6
A8
C3
C7
C8
Solve basic crystallography problems. A3
A5
A7
B7
B8
C3

Contents
Topic Sub-topic
Unit 1. Introduction. Introduction to the world of crystals and symmetry. Its relevance in the field of nanoscience and nanotechnology.
Unit 2. Symmetry elements and operations. Reflection, proper rotation, identity operation, inversion operation, improper rotation. Schönflies and Hermann-Mauguin notation. Exercises and problems.
Unit 3. Point symmetry groups. Combination of elements and symmetry operations. Point symmetry groups. Character tables. Applications of point symmetry and group theory to solve simple problems.
Unit 4. Symmetry of crystals (I). Introduction. Morphology and crystalline forms. Crystal systems. Crystal lattices. Unit cell. Bravais lattices. Miller indexes.
Unit 5. Symmetry of crystals (II). Interaction of point symmetry and translation. Helical axes and sliding planes. The 230 space groups. Asymmetric unit coordinates, general, equivalent and special positions. Space group tables. Exercises and problems.
Unit 6. Common structures of crystalline solids Packaging of rigid spheres model. Metal structures. AB structures: NaCl, CsCl, ZnS, NiAs. AB2 structures: TiO2, CaF2. Other structures of interest.
Unit 7. Introduction to X-ray diffraction. Basic concepts of radiation-matter interaction. Bragg's law. X-ray powder diffractograms and their utility in the study of crystalline solids.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A3 A5 A7 B4 B7 B8 C8 28 42 70
Laboratory practice A5 A6 A7 A8 B6 B7 B8 C3 C7 12 12 24
Workshop A5 B6 C7 4 14 18
Mixed objective/subjective test A3 A5 A7 B4 B7 B8 C8 3 18 21
Objective test A3 A5 A7 B4 B7 B8 C8 1 0 1
Seminar A3 A5 C3 C7 3 12 15
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Lectures will be used to deliver the main the contents of each unit of the course, highlighting their most important aspects and paying particular attention to the fundamental concepts and / or those that are most difficult for students to understand. Lectures are interactive sessions, in which students are expected to participate by asking questions and requesting clarification of ideas or concepts.
Laboratory practice They will focus on the preparation and study of crystalline substances, as well as their characterization by X-ray diffraction, and the interpretation of the results obtained using computer programs. The students will prepare a laboratory notebook in which they will describe the work done in the laboratory and the analysis of the results, as well as the main conclusions.
Workshop An eminently practical training activity designed with the aim of addressing those aspects of the subject that are most difficult to understand. The work will be carried out individually or in groups under the direction of the teaching staff.
Mixed objective/subjective test Final exam that will be carried out in the date fixed by the faculty board. Its content will include development and test questions, as well as problem exercises that will be similar to those analyzed throughout the course. Its objective is to obtain an evaluation of the level of knowledge and competences reached by the students, as well as to evaluate their capacity to relate them and to obtain an overview of the subject.
Objective test Periodically, students will carry out a series of short tests in the problem solving sessions, which will include multiple-choice or short-answer questions. These tests are conceived both for the evaluation of the degree of acquisition of competences and for the consolidation of the contents presented in the lectures. This activity will allow not only to monitor the evolution of the students, but will also serve to detect those aspects of the subject that present a greater difficulty of understanding.
Seminar These sessions will be dedicated to the resolution of problems and questions by the students, with the guidance of the teaching staff. These problems will be facilitated sequenced over time in accordance with the contents discussed in the lectures, and will be made available to the students with enough time so they can work on them before the corresponding face-to-face session.

Personalized attention
Methodologies
Mixed objective/subjective test
Laboratory practice
Seminar
Workshop
Objective test
Guest lecture / keynote speech
Description
The proposed teaching methodology is based on the work of the student, who becomes the main responsible for the own educational process. In order to optimize the effort of the student and obtain guidance during the process, it is extremely important to achieve close and constant interaction between teacher and student. Through this interaction and the different evaluation activities, the teacher will be able to determine to what extent the student is achieving the objectives proposed in each thematic unit and guide them in this regard. This orientation will be carried out through individual interviews that will take place during the tutoring hours of the teacher and / or at the most convenient times for the students. Obviously, and apart from these tutorials proposed by the teacher, students will be able to attend tutorials at their own request as many times as they wish and at times that are most convenient for them.

According to the "Regulations of the regime of dedication to the study of undergraduate students at the UDC" (Art.3.be 4.5) and the "Rules of evaluation, review and claims of the qualifications of undergraduate and master's studies (Art 3 and 8b), students with recognition of part-time dedication and academic exemption from the attendance exemption must be able to participate in a training methodology and associated teaching activities that allow them to achieve the training objectives and competencies of the course. Therefore, they will participate in a personalized orientation system and evaluation tutorials that will serve, on the one hand, to guide the student's autonomous work and monitor their progress during the course, and on the other hand, to assess the degree of development of competence achieved.
The waiver percentage will be set in a first interview with the students, once their personal situation is known. In this way, a schedule will be established for the orientation tutorials, and the number of problem solving workshops that will be evaluated using this methodology will be determined (every two seminars or workshop sessions will be evaluated using 1 tutorial). Once known, their number will be weighted over the total and the number of tutorials in which these students must participate will be established. All of them will be agreed with the students according to their availability, according to the schedule of contents of the course and specifying the delivery times of the different materials that can be evaluated (problem sheets and questions). This material will be delivered to the student in advance through the Moodle platform according to the schedule agreed in the initial interview.
The tutoring sessions will be used to discuss aspects associated with both the contents of the course and the review of the tasks submitted, in addition to carrying out small assessment tests to verify whether students take advantage of these activities.

Assessment
Methodologies Competencies Description Qualification
Mixed objective/subjective test A3 A5 A7 B4 B7 B8 C8 A test containing multiple-choice questions, short- and long-answer questions and problems, which will be similar to those presented throughout the course. 60
Laboratory practice A5 A6 A7 A8 B6 B7 B8 C3 C7 The following aspects of laboratory work will be evaluated:
- Organization of work and safety.
- Attitude, scientific curiosity and degree of involvement in work.
- Quality in the interpretation of the results.
- Quality of the final report (laboratory notebook).
20
Seminar A3 A5 C3 C7 The responses of the students and their individual or group participation in the corresponding face-to-face activities will be graded. Occasionally, and at the request of the teacher, the student must deliver problem sheets that can also be evaluated. 5
Workshop A5 B6 C7 The activities carried out in workshops and the quality and frequency of the participation of the students will be evaluated. 5
Objective test A3 A5 A7 B4 B7 B8 C8 Periodically, students will take a series of short tests, with multiple- answer or short-answer questions, during the seminar sessions. These objective tests are designed both to assess the degree of skill acquisition and to strengthen the contents seen in the lectures. This activity will not only monitor the evolution of the students, but will also serve as a tool to detect those aspects of the course that present a greater difficulty in understanding. 10
 
Assessment comments
Passing the course requires a minimum of 50 points, and at the same time the condition of obtaining a minimum of 45% of the Mixed Test score and a minimum of 40% in laboratory practices must be met. In the event that the minimum score is not reached in any of them, if the sum of the set is greater than or equal to 50 points, a failing grade will be awarded (4.5 out of 10 points). Since assessment is based on a continuous assessment model, the progression of the students throughout the semester will be specifically evaluated, with a maximum of 1 point that can be added to the final grade. The evaluation cannot be positive if students did not attended all the laboratory classes. The student will not be graded if the participation in activities that contribute to the overall grade is below 25% of the overall activities. The "second chance in July" is understood exclusively as a second chance to take the mixed-test: a second mixed-test is taken, representing 50% of the grade. The grades obtained in the other activities carried out during the course will be added to this grade. The honors will be awarded mainly to students who pass the subject at the first opportunity. It will only be awarded on the "second chance" if your maximum number is not covered on the first opportunity.
Students who qualify for the "Part Time Dedication Recognition and Academic Waiver of Attendance" in accordance with UDC regulations, must attend laboratory practices. The final grade for these students will consist of two parts: the grade obtained in the laboratory practices, which will contribute 20% to the final grade, and the mixed test, which will compute for the remaining 80%. These rating percentages will apply to both opportunities. In the case of exceptional, objectionable and duly justified circumstances, the responsible teacher may totally or partially exempt any student from participating in the continuous assessment process. Students who are in this circumstance must pass a specific exam that leaves no doubt about the achievement of the subject's competences.

Sources of information
Basic Borchardt-Ott, Walter (2011). Crystallography : an introduction . Berlin, Springer
Dept. de Cristalografía y Biol. Estruc. , CSIC (2020). Crystalografía.
Sands, Donald E. (1974). Introducción a la cristalografía. Barcelona, Reverté
Smart, Lesley (2012). Solid state chemistry : an introduction. Boca Raton: CRC Press
Kettle, Sidney F.A. (2007). Symmetry and structure readable group theory for chemists. Hoboken: John Wiley
Hargittai, István (1995). Symmetry through the eyes of a chemist. New York : Plenum Press

Complementary Müller, Ulrich (2013). Relaciones de simetría entre estructuras cristalinas : aplicaciones de la teoría de grupos cristalográficos en cristaloquímica. Madrid
Giacovazzo, C (2011). Fundamentals of crystallography. Oxford ; New York : Oxford University Press
Huheey, James E. (1997). Química inorgánica : principios de estructura y reactividad, Capítulo 3. México: Harla
DAVID J. WILLOCK (2009). Molecular Symmetry. Willey


Recommendations
Subjects that it is recommended to have taken before
Chemistry: Structure and Bonding/610G04005

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Advanced Crystallography/610G04042
Techniques of Characterisation of Nanomaterials 2/610G04030
Techniques of Characterisation of Nanomaterials 1/610G04025
Solid State/610G04022
Spectroscopy/610G04017

Other comments
A materia require ter cursado con aproveitamento a materia "Enlace e Estrutura" (610G04005).


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.