Identifying Data 2022/23
Subject (*) Physics: Electricity and Magnetism Code 610G04007
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
First Basic training 6
Language
Spanish
English
Teaching method Face-to-face
Prerequisites
Department Física e Ciencias da Terra
Coordinador
Cabeza Gras, Oscar
E-mail
oscar.cabeza@udc.es
Lecturers
Cabeza Gras, Oscar
Nogueira Lopez, Pedro Fernando
E-mail
oscar.cabeza@udc.es
pedro.nogueira@udc.es
Web
General description O obxectivo fundamental da materia é a adquisición de conceptos básicos de electricidade e magnetismo, que faciliten a comprensión das materias de Física ou outras disciplinas que forman parte do plan de estudos.

Study programme competencies
Code Study programme competences
A1 CE1 - Comprender los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
A2 CE2 - Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
B1 CB1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
B2 CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B5 CB5 - Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
B9 CG4 - Trabajar de forma autónoma con iniciativa.
B11 CG6 - Comportarse con ética y responsabilidad social como ciudadano/a y como profesional.
C1 CT1 - Expresarse correctamente, tanto de forma oral coma escrita, en las lenguas oficiales de la comunidad autónoma
C2 CT2 - Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero
C4 CT4 - Desarrollarse para el ejercicio de una ciudadanía respetuosa con la cultura democrática, los derechos humanos y la perspectiva de género
C7 CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a un desarrollo sostenible ambiental, económico, político y social.
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad
C9 CT9 - Tener la capacidad de gestionar tiempos y recursos: desarrollar planes, priorizar actividades, identificar las críticas, establecer plazos y cumplirlos

Learning aims
Learning outcomes Study programme competences
Understand the description of physical interactions through fields, for which the notions of scalar and vector fields and the operations they support will be introduced: gradient, circulation and rotational. A1
A2
A3
B5
B7
B8
Understand the fundamentals of electrostatics and electrokinetics. A1
A2
A3
B1
B2
B5
B6
B7
B8
B9
C1
C2
C4
C7
C8
C9
To know the bases of magnetism and the properties of magnetic dipoles A1
A2
A3
B1
B2
B5
B6
B7
B8
B9
B11
C1
C2
C4
C7
C8
C9
To know the basics of electrodynamics, that is, generation and reception of electromagnetic waves. A1
A2
A3
B1
B2
B5
B6
B7
B8
B9
B11
C1
C2
C4
C7
C8
C9

Contents
Topic Sub-topic
BLOCK 1. Introduction 1.1. Escalar Fields
1.2. Vectorial Fields
1.3. Mathematical operators associated to fields
BLOCK 2. Electrostatic 2.1. Forces, fields and electric potential.
2.2. Methods for calculating the electric field and potential.
2.3. Work and electrical energy.
2.4. Electric dipoles and quadrupoles.
BLOCK 3. Electrokinetic 3.1. Current, resistance, capacity, back electromotive force.
3.2. Kirchhoff's Laws
3.3. Resolution of electrical circuits of direct current.
BLOCK 4. Magnetism 4.1. Magnetostatics.
4.2. Magnetic dipoles.
4.3. Earth's magnetic field.
BLOCK 5. Electromagnetism 5.1. Lorentz's force.
5.2. Electromagnetic induction.
5.3. Alternating and direct current generators.
BLOCK 6. Classical Electrodynamics 6.1. Maxwell's laws.
6.2. Generation of electromagnetic waves.
6.3. Reception of electromagnetic waves.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A3 B5 B8 B9 B11 C4 C7 C8 C9 32 48 80
Seminar A1 A2 A3 B1 B2 B7 B8 B9 B11 16 32 48
Supervised projects A1 A2 A3 B1 B2 B5 B6 B7 B8 B9 B11 C1 C2 C4 C7 C8 C9 0 16 16
Mixed objective/subjective test A1 A2 A3 B1 B2 B5 B7 B8 B9 B11 C1 C4 C9 4 0 4
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Presentation of the concepts and laws associated with the fundamentals of electromagnetism.
Seminar Application of the concepts presented in the master sessions by solving exercises interactively.
Supervised projects Completion of two supervised works, one will be addressed individually while the other will consist of developing a series of tasks collaboratively within a group.
Mixed objective/subjective test Carrying out tests on the theoretical and practical contents of the subject individually.

Personalized attention
Methodologies
Supervised projects
Description
A atención personalizada consistirá no seguimento da evolución do traballo ou ben na resolución das dúbidas relacionadas coa súa elaboración, e terán lugar de forma individual ou en grupos, dependendo da natureza do traballo. Todas as tutorías poderanse realizar de forma virtual.

Assessment
Methodologies Competencies Description Qualification
Supervised projects A1 A2 A3 B1 B2 B5 B6 B7 B8 B9 B11 C1 C2 C4 C7 C8 C9 Two supervised works will be proposed. One will be done individually and the other in a group. Each work will have a weight in the qualification of 20%. 40
Mixed objective/subjective test A1 A2 A3 B1 B2 B5 B7 B8 B9 B11 C1 C4 C9 Two partial tests will be carried out, each of them contributing a weight in the qualification of 30%. 60
 
Assessment comments

To pass the subject, students must achieve a minimum of 5 points and, in addition, they must obtain a minimum score of 4.5 points out of 10 in each partial test. The evaluation criteria will be the same on all occasions. The approval of each two parts is kept for the final, both in the 1st and in the 2nd opportunity.

The evaluation of students with recognition of part-time dedication and academic exemption from attendance exemption will follow the same criteria, and will consist of the same tests as the rest of the students, adapting the activities requested to their circumstances.

QUALIFICATION at the end of the evaluation process:

1. Those students who meet the minimum requirements and reach a minimum of 5 points, would pass the subject.

2. Those students who do not reach the minimum score established in any of the partial tests (4.5/10 points), this will not compute in the final qualification and in addition, after adding the qualifications, they will only be able to obtain a maximum global qualification of 4.5 points.

The qualification of "Non Presented" will appear to those students who do not present more objective tests.


Sources of information
Basic R. A. Serway (2005). Electricidad yMagnetismo.. México. Thomson.
Tipler y Mosca (2011). Física. Volumen 2. Reverté
J.R. Reitz, F.J. Milford y R.W. Christy (1993). Fundamentos de la teoría electromagnética. . Addison-Wesley Iberoamericana.

Complementary
  • E. Gullón de Senespleda (1976). Electricidad y magnetismo. Problemas de Física. Madrid: Internacional de Romo
  • Santiago Burbano de Ercilla, Enrique Burbano Garcia, Carlos Gracia Muñoz (2006). Problemas de física. Tébar
  • Richard P. Feyman, Robert B. Leighton, Matthew Sands (1975). The Feyman lectures on physics Feynman física. Fondo Educativo Interamericano
  • Raymond A. Serway, John W. Jewett, Jr. (2014). Physics for scientists and engineers. Brooks/Cole, Cengage Learning

Recommendations
Subjects that it is recommended to have taken before
Numerical and Statistical Methods/610G04013
Fundamentals of Mathematics/610G04001
Integrated Basic Laboratory/610G04004

Subjects that are recommended to be taken simultaneously
Advanced Calculus /610G04009

Subjects that continue the syllabus
Physics of the Nanoscale/610G04041
Polymers/610G04028
Solid State/610G04022
Fundamentals of Quantum Theory/610G04015

Other comments

Programa Green Campus Facultade de Ciencias

Para axudar a conseguir unha contorna inmediata sustentable e cumprir co punto 6 da "Declaración Ambiental da Facultade de Ciencias (2020)", os traballos documentais que se realicen nesta materia:

a. Solicitaranse maioritariamente en formato virtual.

b. De realizarse en papel:

- Non se empregarán plásticos.

- Realizaranse impresións a dobre cara.

- Empregarase papel reciclado.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.