Identifying Data 2022/23
Subject (*) Instrumental Analysis Code 610G04014
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Second Obligatory 6
Language
Spanish
Galician
Teaching method Face-to-face
Prerequisites
Department Química
Coordinador
Moreda Piñeiro, Jorge
E-mail
jorge.moreda@udc.es
Lecturers
Andrade Garda, Jose Manuel
Moreda Piñeiro, Jorge
Prieto Blanco, Maria del Carmen
E-mail
jose.manuel.andrade@udc.es
jorge.moreda@udc.es
m.c.prieto.blanco@udc.es
Web
General description Nesta materia preténdese que o alumno comprenda o fundamento e as posibilidades das técnicas analíticas instrumentais mais habituais. Poñerase especial atención nos fundamentos físicos e químicos das principais técnicas, configuración dos equipos, condicións experimentais e aplicacións a nivel de nanoescala.

Study programme competencies
Code Study programme competences
A2 CE2 - Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A6 CE6 - Manipular instrumentación y material propios de laboratorios para ensayos físicos, químicos y biológicos en el estudio y análisis de fenómenos en la nanoescala.
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
A8 CE8 - Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de la instrumentación y de los productos y nanomateriales.
B1 CB1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
B2 CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
B9 CG4 - Trabajar de forma autónoma con iniciativa.
B11 CG6 - Comportarse con ética y responsabilidad social como ciudadano/a y como profesional.
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C4 CT4 - Desarrollarse para el ejercicio de una ciudadanía respetuosa con la cultura democrática, los derechos humanos y la perspectiva de género
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad
C9 CT9 - Tener la capacidad de gestionar tiempos y recursos: desarrollar planes, priorizar actividades, identificar las críticas, establecer plazos y cumplirlos

Learning aims
Learning outcomes Study programme competences
Plan and execute the stages of the analytical process for nanoscale analysis. A2
A3
B1
B2
B8
B9
Know the fundamentals and characteristics of the most common instrumental techniques (chromatography, spectrometry and electroanalytical) A2
A3
Ability to select the most appropriate instrumental technique in solving nanometric analysis A6
A7
C4
Ability to obtain the most reliable information from experimental data. Making calculations. Learn to interpret data and express analytical results. A3
A7
B3
B7
B11
Skill in the use of different instruments and adjusting the instrumental variables. Develop a critical attitude in experimental work. A8
B1
C3
C4
C8
C9

Contents
Topic Sub-topic
Unit 1. Introduction to instrumental analytical techniques.
The analytical process and analysis at the nanoscale. Characteristics and classification of instrumental techniques. Basic components of the instruments. Signs and noise. Analytical problem solving. Quality parameters of instrumental techniques. Calibration.
Unit 2. Mass spectrometry.



Basis. Instrumentation. Applications.
Unit 3. Atomic spectrometry.

Basis. Instrumentation. Applications.
Unit 4.- X-ray spectrometry and related techniques.



Basis. Instrumentation. Applications.
Unit 5.- Electroanalytical methods Basis. Instrumentation. Applications.
Unit 6.- Introduction to chromatography

Basis. Van Deemter's equation.
Unit 7.- Gas chromatography


Basis. Instrumentation. Applications.
Unit 8.- Liquid chromatography
Basis. Instrumentation. Applications.
Unit 9.- The mass spectrometer as a detector in chromatography. Chromatographic techniques coupled with mass spectrometry. Applications.
Laboratory practices.

Practice 1-2.- Atomic absorption and emission spectrometry
Practices 3-4. Gas and liquid chromatography

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Seminar A3 B2 B7 B9 C3 C8 8 8 16
Laboratory practice A6 A8 B3 C4 C9 15 0 15
Workshop A2 0 2 2
Objective test A2 A3 3 0 3
Guest lecture / keynote speech A2 A7 B1 B8 B11 28 84 112
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Seminar Classes for solving cases and problems. In the seminars, 8 sessions will be held in small groups in which the teacher and the students will solve different problems and numerical questions. The work of the students in these seminars will be evaluated by solving problems at the same day of the objective test.
Laboratory practice The learning of the contents of the subject will involve 5 sessions of laboratory practices in which the student will put into practice the theoretical concepts acquired, will manipulate analytical instruments and solve problems. The teacher will advise these activities.
Workshop The contents explained will be reinforced with the individual completion of self-evaluation questionnaires.
Objective test A final exam will be held to assess the degree of learning throughout the semester. The date of the same is indicated in the exam calendar of the degree.
Guest lecture / keynote speech Presentation in the classroom, in participatory classes, of the concepts and procedures associated with the subject. Learning will involve the incorporation of fundamental concepts about each of the instrumental techniques. For this, 28 Master Sessions will be given on the most important contents of the program. For a full use of these, it is recommended that the student has previously read on their own the fundamental aspects of these topics in the recommended texts.

Personalized attention
Methodologies
Seminar
Laboratory practice
Description
The labs and seminars for the numerical solution of problems are conducted under the supervision of the teacher at school hours. Tutorial sessions (if necessary) will be made in which doubts will be resolved and the work performed by the student will be supervised, etc.


Assessment
Methodologies Competencies Description Qualification
Seminar A3 B2 B7 B9 C3 C8 The seminars will be avaluated by the individual resolution of numerical problems on the day of the multiple choice question test. 20
Objective test A2 A3 The students' work will be evaluated through an Objective Test that may consist of multiple-choice questions, short questions and diagrammatic drawings which enclosed all theoretical and practical contents. 50
Workshop A2 The questionnaires will completed by the students at the end of each topic. 10
Laboratory practice A6 A8 B3 C4 C9 The Labs will be mandatory throughout the semester. The students will anwered several cuestions during at the end of lab sesions. 20
 
Assessment comments

To pass the course at the first opportunity, there are three basic requirements:

- Compulsory attendance at laboratory practices and regular attendance at other assessable activities (seminars for solving numerical problems),

-carry out all assessable activities (workshops) and

-Achieve a minimum final grade of 5 points in each of them.

If this minimum score is not reached in any of them, if the average is greater than or equal to 5 (out of 10), the subject will appear as failed (4.5). Students who do not perform the laboratory practices and do not take the objective test will be classified as Not Presented. Grades for labs and workshops will be kept the second time in July. While the qualification of the objective test of July will replace the one obtained in the objective test of February. Students evaluated on the second opportunity will only be eligible for honors enrollment if the maximum number of honors for the corresponding course has not been fully covered on the first opportunity.

Fraudulent performance of tests or evaluation activities will be penalized taking into account what is established in the regulations.

For students with academic exemptions and attendance exemptions, the realization of laboratory practices will be mandatory and will be facilitated within the flexibility allowed by the coordination schedules and the material and human resources. They will be considered exempt from the lectures, although they will be facilitated to attend as many seminars as possible outside of the established academic hours. The teacher will solve the doubts and review the work done in the hours of tutorials (by appointment) that he establishes with the students. It will be mandatory to carry out the laboratory practices in the established academic schedule. The student with recognition of part-time dedication will be evaluated by the marks obtained in the mixed tests (65%), in the practices (20%) and workshops (15%). This will apply to both opportunities.

Students who request the early call in December, will apply the considerations indicated in the previous year's teaching guide.

The teaching-learning process, including evaluation, refers to a complete academic course and, therefore, will start again with a new academic course, including all the activities and evaluation procedures that are scheduled for said academic course.


Sources of information
Basic HARRIS, D.C (2007). Análisis químico cuantitativo. Barcelona, Reverté
Sulabha K. Kulkarni (2015). Nanotechnology: Principles and Practices . Ed. Springer
SKOOG, D.A.; HOLLER, F.J.; NIEMAN, T.A (2001). Principios de análisis instrumental . Madrid, McGraw Hill
ANDRADE GARDA JM, CARLOSENA ZUBIETA A., GÓMEZ CARRACEDO MP, , MAESTRO-SAAVEDRA MA, PRIETO BLANCO MC, (2017). Problems of Instrumental Analytical Chemistry. A Hands-On Guide. Editorial World Scientific (London)
CELA, R.; LORENZO, R.A.; CASAIS, M.C (2002). Técnicas de separación en química analítica. Madrid, Síntesis
RÍOS CASTRO, A.; MORENO BONDI, M.C.; SIMONET SUAU, B.M. (2012). Técnicas Espectroscópicas en Química Analítica. Volumen I y II. Ed. Síntesis
GAVIRA VALLEJO, J.M.,HERNANZ GISMERO, A (2007). Técnicas Físicoquímicas en Medio Ambiente. Universidad Nacional de Educación a Distancia

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

Recommended:- Study and review the contents taught weekly using bibliographic material to understand and deepen the information obtained in class. - Clarify any doubts with the teacher. -  Prepare the seminars thoroughly. -  Participate actively in class. -Required activities should be delivered in virtual format and on computer support, if they are carried out on paper, plastics will not be used, double-sided printing will be made using recycled paper and drafts will be avoided.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.