Identifying Data 2022/23
Subject (*) Spectroscopy Code 610G04017
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Second Obligatory 6
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Química
Coordinador
Canle López, Moisés
E-mail
moises.canle@udc.es
Lecturers
Canle López, Moisés
Fernandez Perez, Maria Isabel
E-mail
moises.canle@udc.es
isabel.fernandez.perez@udc.es
Web http://http://moodle.udc.es/
General description Esta materia aborda os fundamentos das principais técnicas de espectroscópicas e difractométricas de caracterización de nanomateriais e nanoestruturas. Preténdese a adquisición dos coñecementos, destrezas e competencias asociados á compresión e aplicación de ditas técnicas.

Study programme competencies
Code Study programme competences
A1 CE1 - Comprender los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
A2 CE2 - Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A5 CE5 - Conocer los rasgos estructurales de los nanomateriales, incluyendo las principales técnicas para su identificación y caracterización
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
B2 CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
C2 CT2 - Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad

Learning aims
Learning outcomes Study programme competences
· To understand structural characteristics in nanoscience, as well as the main technical of structural characterisation. A1
A2
A3
B2
B3
· To understand, recognise and analyse new problems, and be able to plan strategies to solve them. A5
A7
B7
C8
· To be able to interpret the data from observations and measurements in the laboratory. A7
B2
B3
B6
B7
C3
· To be able to apply spectroscopic techniques as tools in identification of nanostructures and nanoparticles. A2
A3
A5
A7
B2
B3
C2
C8

Contents
Topic Sub-topic
1. Introduction to spectroscopy. Electromagnetic radiation and matter. Resonant and non resonant processes.
Transition dipole moment.
Spontaneous emission.
Selection rules.
Types of spectra.
Population of energy levels. Lmbert-Beer Law.
Factors that determine the shape and width of spectral bands.
Principles of laser action.
2. Vibrational spectroscopy. Symmetry in Chemistry. Applications to Spectroscopy.
IR spectroscopy
Electron energy loss spectroscopy: EELS
Raman spectroscopy
3. Electronic spectroscopy UV-Vis spectroscopy
Diffuse reflectance spectroscopy
Luminescence: fluorescence, phosphorescence
Surface plasmon resonance
Size quantum effects
4. Photoelectron spectroscopy UPS spectroscopy
XPS spectroscopy
Auger spectroscopy
Other
5. Introduction to diffraction techniques XR diffraction: XRD, SAXS
XR fluorescence
Electron diffraction: LEED
Neutron diffraction
6. Electron microscopy Scanning electron microscopy (SEM, SEM-EDS)
Transmission electron microscopy (TEM)
Atomic force microscopy (AFM)
7. Magnetic resonance techniques Nuclear magnetic resonance: NMR, SS-NMR, MAS-NMR
Electron and paramagnetic resonance: EPR
8. Other spectroscopies Mössbauer spectroscopy
Ionic spectrometry: RBS, SIMS
Dielectric response spectroscopy

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Seminar A2 A3 A7 B2 B3 B7 C3 8 16 24
Mixed objective/subjective test A1 A2 A5 A7 B2 B3 B7 4 0 4
Oral presentation A2 A7 B2 B3 C2 C3 2 0 2
Multiple-choice questions A2 A3 A5 B2 B3 B6 B7 C2 C3 8 16 24
Guest lecture / keynote speech A1 A2 A5 A7 B2 B3 C8 31 62 93
 
Personalized attention 3 0 3
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Seminar This activity is planned to be carried out in groups as reduced as possible, with the aim to deepen in a dynamic and argumentative way in the distinct topics. The success of this methodology depends on the active participation of the students.
Mixed objective/subjective test Combination of different types of questions, tests and problems, brief answer or short essay, evaluating knowledge, capacity of reasoning and critical ability.
Oral presentation Oral presentation of a case taken from the case studies activity, or a similar one proposed by the lecturer. The activity includes debate on the subject that is presented.
Multiple-choice questions Ao longo do cuadrimestre, a medida que se avanza na materia, vanse engadindo tests no campus virtual. O alumnado debe respostar a estos tests, que computan para a avaliación, nun tempo limitado e breve. O obxectivo e fomentar o estudo paulatino e progresivo da materia.
Guest lecture / keynote speech Lectures with audiovisual or blackboard support in which the fundamental aspects of the subject are put forward, with possibility of participation of the students.

Personalized attention
Methodologies
Oral presentation
Description
It aims to guide to the students in the understanding of the problem posed and of the possible strategies to solve it.
It will be jointly scheduled between lecturers and students, as needed. It will be carried out at lecturers' office. Will be distributed in 12 sessions of 15 min along the semester.
The students with recognition of part time dedication and exemption of assistance will have to assist to at least a personal tutory for each seminar (=8 tutories) and one out of two case studies (=4 tutories), previously scheduled in agreement with the lecturers.

Assessment
Methodologies Competencies Description Qualification
Mixed objective/subjective test A1 A2 A5 A7 B2 B3 B7 Final examination with two parts, one of a theoretical type (50%), including test questions, of short answer and/or essay, and another of problems solution (50 %), in which the ability to apply theoretical contents for problems solution will be assessed. 60
Oral presentation A2 A7 B2 B3 C2 C3 Quality of the presented information.
Abilities shown in the presentation.
Capacity to defend the own presentation.
20
Multiple-choice questions A2 A3 A5 B2 B3 B6 B7 C2 C3 Tests de resposta múltiple realizados a través do campus virtual. Valórase a adquisición de coñecementos sobre a materia e a capacidade de respostar cuestións sobre a mesma nun tempo limitado, poñendo de manifesto claridade nos conceptos. Estos test non se consideran recuperables na segunda oportunidade. 20
 
Assessment comments

The aim is to evaluate the acquisition of knowledge, critical capacity, synthesis, comparison, elaboration, application and originality of the students. In order to make the best use of the subject, students must attend all face-to-face activities.

First opportunity. In order for the case study and oral presentation activities to be taken into account, a minimum grade of 4.0/10 must be obtained in each of the two parts of the mixed test. The final grade is obtained by applying the established percentages and the previously established restrictions.

Second opportunity. The mixed test is repeated, since the activities related to the multiple-choice test (which reflects the continuity and progressiveness in the acquisition of knowledge) and the oral presentation (since it is not possible to debate it with the presence of all the students) are considered unrepeatable. Thus, in this second opportunity, the mixed test becomes worth 80% of the final grade (half for each of its parts), which is obtained by applying the established percentages and the previously established restrictions.

In any of both opportunities, if a minimum grade of 4.0/10 is obtained in each of the parts of the mixed test, the subject will be considered as failed even if the final grade, calculated according to the corresponding percentages, is equal or higher than 5/10. In this case, the final grade will be 4.5/10.

Honors: if there are several students with the same grade who are eligible for the MH, and the number of MH available is less than the number of students, they will be called to a written test. Students evaluated in the second opportunity will only be eligible for the MH if the number of MHs was not covered in its totality in the first opportunity.

Grade of "not presented": applies to students who had participated in evaluable activities that represent less (<) 40% of the final grade.

Successive academic courses. The teaching-learning process, including the evaluation, refers to one academic year and, therefore, it starts again from scratch with each new course.

Students with recognition of part-time dedication and academic dispensation of exemption from attendance may take the mixed test, as long as the professors are duly informed at the beginning of the course. Without detriment to the above, the professors may ask these students to carry out different works/problems during the course to be presented during tutorial hours.

Plagiarism and fraud in the completion of assignments or tests. The rules of the University of A Coruña will be applied

.

Use of this subject as a training complement for doctoral studies: the qualification will be "pass" or "fail".


Sources of information
Basic Guozhong Cao (2004). Nanostructures & nanomaterials. London : Imperial College Press
Julio A. Gonzalo, José de Frutos, Jorge García (2002). Solid State Spectroscopies. Basic Principles and Applications. Singapore: World Scientific
Kurt W. Kolasinski (2012). Surface Science. Foundations of Catalysis and Nanoscience. Chichester : Wiley
Rolando M.A. Roque-Malherbe (2010). The Physical Chemistry of Materials. Boca Raton : CRC Press

Complementary Atkins, Peter W. (2014). Atkins' Physical Chemistry. Oxford : Oxford University Press
A. M. Ellis (2005). Electronic and photoelectron spectroscopy fundamentals and case studies.. Cambridge : Cambridge University Press
Levine, Ira N. (2004). Fisicoquímica. Madrid : McGrawhill
D.K. Chakrabarty, B. Viswanathan (2009). Heterogeneous Catalysis. Kent : New Age Science
Arthur W. Adamson, Alice P. Gast (1997). Physical Chemistry of Surfaces. Chichester : Wiley
Ooi, Li-ling (2010). Principles of x-ray crystallography. Oxford : Oxford University Press
D. C. Harris (1989). Symmetry and spectroscopy an introduction to vibrational and electronic spectroscopy. New York : Dover
S. Roy Morrison (1990). The Chemical Physics of Surfaces. London: Plenum Press
J. Keeler (2010). Understanding NMR spectroscopy. Chichester : John Wiley and Sons

Materiais proporcionados ao longo do curso polos docentes.


Recommendations
Subjects that it is recommended to have taken before
Advanced Crystallography/610G04042
Fundamentals of Quantum Theory/610G04015
Physics: Electricity and Magnetism/610G04007
Chemistry: Structure and Bonding/610G04005
Physics: Mechanics and Waves/610G04002

Subjects that are recommended to be taken simultaneously
Synthesis and Preparation of Nanomaterials/610G04020
Instrumental Analysis/610G04014

Subjects that continue the syllabus
Techniques of Characterisation of Nanomaterials 2/610G04030
Techniques of Characterisation of Nanomaterials 1/610G04025
Surface Science/610G04021
Solid State/610G04022

Other comments

- It is recommended to review assiduously the theoretical concepts introduced in the maximum lessons, as well as to solve simultaneously the questions in exercises that will be proposed.

- It is not advisable to study only by class notes. It is recommended to elaborate your own material by completing the notes.

- It is strongly recommended to make use of the tutorial hours to clarify doubts and deepen our knowledge.

- Green Campus Program of the Faculty of Science. To help achieve an immediate sustainable environment and comply with point 6 of the "Environmental Declaration of the Faculty of Science (2020)", the work of this subject will be requested in virtual format and computer support.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.