Identifying Data 2022/23
Subject (*) Molecular and Metabolic Biochemistry Code 610G04023
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Third Obligatory 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Bioloxía
Coordinador
Barreiro Alonso, Aida Inés
E-mail
aida.barreiro@udc.es
Lecturers
Barreiro Alonso, Aida Inés
Insua Pombo, Ana Maria
Vila Sanjurjo, Antón
E-mail
aida.barreiro@udc.es
ana.insua@udc.es
anton.vila@udc.es
Web
General description Os contidos desta materia permitirán aos estudantes coñecer e entender os mecanismos moleculares asociados aos procesos de transmisión, expresión e variación do material xenético, así como técnicas de análise masiva de ácidos nucleicos e proteínas. Tamén permitirá coñecer e entender os mecanismos de bioenerxética e as principais reaccións químicas que teñen lugar na célula xunto coa súa regulación. Os coñecementos adquiridos serán indispensables para outras materia do grao en Nanociencia e Nanotecnoloxía.

Study programme competencies
Code Study programme competences
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A6 CE6 - Manipular instrumentación y material propios de laboratorios para ensayos físicos, químicos y biológicos en el estudio y análisis de fenómenos en la nanoescala.
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
A8 CE8 - Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de la instrumentación y de los productos y nanomateriales.
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4 CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C6 CT6 - Adquirir habilidades para la vida y hábitos, rutinas y estilos de vida saludables
C7 CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a un desarrollo sostenible ambiental, económico, político y social.
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad

Learning aims
Learning outcomes Study programme competences
Identify the main metabolic pathways in the cell, their regulation and integration. B3
B4
Recognize the principles of bioenergetics. B3
B4
Recognize the systems of replication and transmission of genetic information, as well as their regulation. B3
B4
B6
B8
Solve basic problems of molecular and metabolic biochemistry. A3
B3
B4
B6
B7
B8
C3
C8
Apply the main biochemical techniques for the study of molecular and metabolic biochemistry. A3
A6
A7
A8
B3
B4
B6
B7
B8
C3
C6
C7
C8

Contents
Topic Sub-topic
TOPIC 1. DNA replication Semiconservative DNA replication. Enzymology of the replication. Telomere synthesis. Replication of mitochondrial and chloroplast DNA.
TOPIC 2. Synthesis and processing of RNA. Classes of RNA. RNA polymerases. Promoters and transcriptional apparatus. Transcription in prokaryotes and eukaryotes: initiation, elongation and termination. Interrupted genes: exons and introns. Processing of eukaryotic pre-mRNA. Synthesis and processing of pre-rRNA. Synthesis, processing and editiong of the different RNAs.
TOPIC 3. Mutation and DNA repair. Mutation molecular basis. DNA Repair mechanisms.
TOPIC 4. Molecular mechanism of genetic recombination, The role of genetic recombination. Gene conversion. Models of homologous and site-specific recombination.
TOPIC 5. OMICs. Methodology for genome and genome expression studies.
TOPIC 6. Translation and protein processing. Central dogma in molecular biology. Ribosomes and tRNAs. Translation cycle: initiation, elongation, and termination. Genetic code and genetic decoding.
TOPIC 7. Regulation of gene expresssion. Regulation od gene expression in bacteria. Operons. Regulation of gene expression in eukaryotes.Changes in chromatin structure. Transcription, RNA processing and mRNA stability control. Control at the level of translation.
TEMA 8. Proteomics. Methodology for protein and proteins expression studies.
TOPIC 9. Bioenergetics and introduction to metabolism. Anabolic and catabolic pathways. Compartmentalization. Need for coordination and interaction between the different routes. Transport of metabolites across cell membranes. Oxidation reduction in energy production. Generation of ATP: substrate-level phosphorylation, oxidative phosphorylation and photosynthetic phosphorylation as energy production systems.
TOPIC 10. Glycolysis and catabolism of hexoses. Location of the routes. Stages and pathway regulation. Fermentations. Relationship with the pentose phosphate pathway.
TOPIC 11. TCA cycle. Location of the route. Conversion of pyruvate to acetyl-CoA. Study of the pyruvate dehydrogenase complex and interaction with other routes. Anaplerotic routes, importance of mitochondrial shuttles and balances.
TOPIC 12. Gluconeogenesis. Definition and localization, metabolic need for this route. Glyoxylate cycle.
TOPIC 13. "Dark Phase" of photosynthesis. Relationship with gluconeogenesis. he Calvin cycle. Photorespiration. Regulation. Sucrose metabolism and starch.
TOPIC 14. Glycogen metabolism. The reserve polysaccharide glycogen. Biosynthesis and degradation of muscle and liver glycogen. Regulation. The role of the liver in the maintenance of blood glucose. Congenital anomalies of glycogen metabolism.
TOPIC 15. Lipid Metabolism. Lipid catabolism: lipolysis, beta-oxidation. Biosynthesis of fatty acids, triglycerides, membrane lipids and steroids. Regulation of lipid metabolism. Metabolism of ketone bodies.
TOPIC 16. Metabolism of amino acids. Digestion and degradation of intracellular proteins. Nitrogen removal of amino acids. Urea cycle. Ammonia transport to the liver. Fate of the carbon skeleton of amino acids. Amino acid biosynthesis. Regulation
TOPIC 17. Derivatives of amino acids. Amino acid precursor functions: Amines with biological activity, glutathione, porphyrins. Metabolism of purine and pyrimidine nucleotides. Regulation
TOPIC 18. Integration of metabolism. Metabolic profiling of major organs. Key connections between routes: glucose-6-phosphate, pyruvate and acetyl CoA. Metabolic adaptations to stress. Fasting, exercise.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech B3 B6 B8 C8 28 54 82
Laboratory practice A6 A7 A8 B3 B4 B6 C6 C7 9 6 15
ICT practicals A7 B3 B6 B7 B8 C3 6 4 10
Problem solving A1 A2 A3 B2 B4 B6 B8 8 17 25
Diagramming B6 B8 0 12 12
Mixed objective/subjective test B3 B4 B8 4 0 4
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech The topics of the subject will be taught by the professors with the help of audiovisual media. The relevant documentation will be available to the students in the Virtual Campus.
Laboratory practice Practial classes will be carried out in the laboratory so that students learn how to handle basic scientific instruments used in Biochemistry and Molecular Biology.
ICT practicals Exercises requiring the consultation of databases and the use of bioinformatics tools will be carried out.
Problem solving Practical problems/questions will be solved in smaller groups of students to deepen the practical application of the concepts explained in the lectures.
Diagramming Creation of a metabolic map by diagrams of the metabolic pathways that occur in the cell and that allows interrelation and connection of different pathways.
Mixed objective/subjective test Written test used for learning assessment, which may combine different types of questions: multiple-choice, association, explanatory, or calculation and problem-solving questions.

Personalized attention
Methodologies
Laboratory practice
Diagramming
Problem solving
Description
For all students, personalized tutoring will be provided, focused on guidance for the realization of problems, resolution of doubts and clarifications. This personalized attention will be carried out throughout the course and upon request of the student.
Students will also be able to request tutoring and solve specific doubts by e-mail.

Assessment
Methodologies Competencies Description Qualification
Laboratory practice A6 A7 A8 B3 B4 B6 C6 C7 Laboratory practices are considered a compulsory attendance activity to pass the subject.
The evaluation will consist of an objective test in which questions will be asked on the basis and applications of the practical clases carried out.
10
Diagramming B6 B8 A metabolic map integrating the metabolic pathways that take place in the cells will be made. 10
ICT practicals A7 B3 B6 B7 B8 C3 The degree of understanding of the analyses performed and knowledge of the bioinformatics tools used will be assessed. The test requires the use of a computer connected to the internet and equipped with the bioinformatics programs to be used. 10
Mixed objective/subjective test B3 B4 B8 Evaluation of the knowledge acquired both in the lectures and in the problem classes by test questions, essay questions, definitions, questions to relate and/or questions that require providing a solution. 70
 
Assessment comments

LABORATORY PRACTICES are compulsory. Absence from practicals must be duly justified in order to pass the course.

To be evaluated, it is mandatory to take tests on theory (mixed test), laboratory practices, and ICT practices.

To pass the subject a 5 must be achieved and have >4,5 in the mixed tests and an average qualification in the practical >4,5 (laboratory and ICT). If the qualification resulting from the sum of all the assessable activities is equal to or higher than 5, but the indicated requirements are not met, the qualification would be 4.0 (fail).

The grade of Non Attendance(NP) will be applied to the students that do no attend the official exam.

Honors will be preferably awarded among students with a score of 9 or higher in the January opportunity.

There will be a midterm exam and, in case of achieving a grade higher than 4,5 it will not have to be repeated in the January and July opportunities.

On the second opportunity (July), students may choose to: (A) adopt the evaluation criteria of the first opportunity (specified in the EVALUATION section); or (B) take the tests corresponding to theory (mixed test), laboratory practice sessions, and ICT, with the mixed test representing 80% of the total grade. If the student chooses option B, he/she must inform the teacher responsible for the subject 10 days before the exam. 

In the case of students with part-time dedication and exemption from attendance, additional measures may be adopted so that the subject can be passed. These measures may include flexibility in the date of submission of essays, flexibility in the hours of practices, or grading through a global assessment test of learning outcomes.

Fraudulent realization of tests or evaluation activities, once verified, will directly imply the qualification of "0" in the corresponding opportunity.


Sources of information
Basic Luque J, Herráez A. (2010). Biologia Molecular e Ingenieria Genetica. Hardcourt
Mathews C.K., Van Holde K.E., Appling D.R. y Anthony-Cahill S.J. (2013). Bioquímica. Pearson
Stryer, L., Berg, J.M. y Tymoczko, J.L. (2015). Bioquímica. Reverté
Feduchi, E., Romero, C.S., Yáñez, E., García-Hoz Jiménez, C. (2021). Bioquímica. Conceptos esenciales. Médica Panamericana
Klug, W.S., Cummings, M.R., Spencer, C.A . (2013). Conceptos de Genética. Pearson/Prentice Hall
Klug, W.S., Cummings, M.R., Spencer, C.A., Paladino, M.A., Killian, D.J. (2020). Concepts of Genetics. Pearson Education
Pierce, B.A. (2015). Genética: un enfoque conceptual. Médica Panamericana
Pierce, B.A. (2020). Genetics: a conceptual approach. Freeman
Nelson, D.L, Cox, M.M. (2018). Lehninger. Principios de Bioquímica. Omega

Complementary

Melo y Cuamatzi (2004). Bioquímica de los procesos metabólicos. Reverté-UAM Xochimilco


Recommendations
Subjects that it is recommended to have taken before
Structural Biochemistry/610G04019
Cell Biology/610G04003
Integrated Basic Laboratory/610G04004

Subjects that are recommended to be taken simultaneously
Microbiology and Immunology/610G04024

Subjects that continue the syllabus
Fundamentals of Biotechnology/610G04029

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.