Identifying Data 2022/23
Subject (*) Techniques of Characterisation of Nanomaterials 1 Code 610G04025
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Third Obligatory 6
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Enxeñaría Naval e Industrial
Física e Ciencias da Terra
Coordinador
López Beceiro, Jorge José
E-mail
jorge.lopez.beceiro@udc.es
Lecturers
Artiaga Diaz, Ramon Pedro
Del Castillo Busto, Estela
López Beceiro, Jorge José
Rodríguez Fernández, Carlos Damián
Terán Baamonde, Javier
E-mail
ramon.artiaga@udc.es
estela.delcastillo@udc.es
jorge.lopez.beceiro@udc.es
c.damian.rodriguez@udc.es
javier.teran.baamonde@udc.es
Web
General description Introdución a distintas técnicas de caracterización de materiais, así como a súa aplicación a distintos nanomateriais. Os alumnos adquirirán coñecementos sobre os fundamentos de distintas técnicas de caracterización e sobre como interpretar os resultados obtidos.

Study programme competencies
Code Study programme competences
A4 CE4 - Desarrollar trabajos de síntesis y preparación, caracterización y estudio de las propiedades de materiales en la nanoescala.
A5 CE5 - Conocer los rasgos estructurales de los nanomateriales, incluyendo las principales técnicas para su identificación y caracterización
A6 CE6 - Manipular instrumentación y material propios de laboratorios para ensayos físicos, químicos y biológicos en el estudio y análisis de fenómenos en la nanoescala.
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
A8 CE8 - Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de la instrumentación y de los productos y nanomateriales.
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
B10 CG5 - Trabajar de forma colaborativa.
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad
C9 CT9 - Tener la capacidad de gestionar tiempos y recursos: desarrollar planes, priorizar actividades, identificar las críticas, establecer plazos y cumplirlos

Learning aims
Learning outcomes Study programme competences
Knowledge of the fundamentals of different characterization techniques. A5
B8
C3
C8
Ability to correctly interpret the results obtained through different characterization techniques. A4
A6
A7
B3
B7
B10
C9
Know and understand the main characteristics and security protocols of a clean room. A6
A8
B8
C8
C9

Contents
Topic Sub-topic
Introduction to characterization techniques. - Optical characterisation techniques.
- Microscopic characterisation techniques.
- Spectroscopic characterisation techniques.
- Thermodynamic and other important characterisation techniques.
- Separation and purification methods
Thermal analysis. Thermogravimetry (TGA).
Differential Scanning Calorimetry. (DSC, PDSC, MTDSC)
Dielectric Analyzer (DEA)
Rheology Viscoelasticity
Rheometer types and experimental geometries
Experimental set-up
Interpretation of results
XR Diffraction. Introduction to X-ray diffraction analysis (XRD)
Uses and applications in the characterisation of nanomaterials
Presentation and analysis of results
Electronic microcospies
Scanning Electron Microscopy (SEM): uses and applications in the characterisation of nanomaterials. Image analysis.
Transmission Electron Microscopy (TEM): uses and applications in the characterisation of nanomaterials. Image analysis.
Main characteristics of a clean room. Usage requirements and safety protocols. Risk assessment associated with the experiment.
Experimental procedure, selection of techniques and interpretation of results.
Preparation of laboratory notebook/report.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Mixed objective/subjective test A5 A7 A8 B7 B8 2 6 8
Laboratory practice A4 A6 A7 A8 B3 B7 B8 B10 C3 C8 C9 27 27 54
Seminar A4 A5 A7 A8 B7 B8 C8 27 27 54
Supervised projects A4 A5 A7 A8 B3 B7 B8 B10 C3 C8 C9 4 28 32
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Mixed objective/subjective test A test that integrates essay-type questions and objective-type questions.
The former includes open-ended essay questions; the latter may combine multiple-choice, ordering, short-answer, discrimination, completion and/or association questions.
Laboratory practice Methodology that enables students to learn effectively through practical activities such as demonstrations, exercises, experiments and investigations.
Seminar A group work technique aimed at the intensive study of a subject. It is characterised by discussion, participation, the preparation of documents and the conclusions to be reached by all members of the seminar.
Supervised projects Methodology designed to promote autonomous learning by students, under the supervision of the lecturer and in a variety of scenarios (academic and professional). It is primarily concerned with learning "how to do things". It is an option based on students taking responsibility for their own learning.
This teaching system is based on two basic elements:
independent learning by the students and the monitoring of this learning by the teacher-tutor.

Personalized attention
Methodologies
Supervised projects
Description
Personalised attention to address the needs and queries of students related to tutored work, providing guidance, support and motivation in the learning process.
This personalised attention may be provided in person or in a non-classroom setting via email, the virtual campus or similar means.

Assessment
Methodologies Competencies Description Qualification
Mixed objective/subjective test A5 A7 A8 B7 B8 A test that integrates essay-type questions and objective-type questions.
The former includes open-ended essay questions; the latter may combine multiple-choice, ordering, short-answer, discrimination, completion and/or association questions.
40
Supervised projects A4 A5 A7 A8 B3 B7 B8 B10 C3 C8 C9 Methodology designed to promote autonomous learning by students, under the supervision of the lecturer and in a variety of scenarios (academic and professional). It is primarily concerned with learning "how to do things". It is an option based on students taking responsibility for their own learning.
This teaching system is based on two basic elements:
independent learning by the students and the monitoring of this learning by the teacher-tutor.
Students will prepare a tutored project which they will have to deliver and defend orally.
25
Laboratory practice A4 A6 A7 A8 B3 B7 B8 B10 C3 C8 C9 Methodology that enables students to learn effectively through practical activities such as demonstrations, exercises, experiments and investigations.
Students must deliver a practice notebook in which they include all the activities carried out.
35
 
Assessment comments

In order to pass the subject you must have at least a 4 (out of 10) in the mixed test.


Sources of information
Basic

1. Dieter Vollath (2013). Nanomaterials: an introduction to synthesis, properties and applications. Wiley.VCH.

2. Surender Kumar Sharma (2018). Handbook of Materials?Characterization. Springer.

3. Menczel JD, Prime RB, editors. Thermal analysis of polymers: fundamentals and applications. Hoboken, N.J: John Wiley; 2009.

4. Artiaga Díaz R. Thermal analysis, fundamentals and applications to material characterization: proceedings of the international seminar?: thermal analysis and rheology, Ferrol, Spain, 30 Juny-4 July 2003 [Internet]. La Coruña], Spain: Universidade da Coruña; 2005 [cited 2017 Jan 31]. Available from: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=331434

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.