Identifying Data 2022/23
Subject (*) Kinetic and Catalysis Code 610G04026
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Third Obligatory 6
Language
Spanish
English
Teaching method Face-to-face
Prerequisites
Department Química
Coordinador
Brandariz Lendoiro, Maria Isabel
E-mail
i.brandariz@udc.es
Lecturers
Brandariz Lendoiro, Maria Isabel
E-mail
i.brandariz@udc.es
Web http://campusvirtual.udc.es
General description Este curso de cinética química divídese en tres bloques fundamentais: en primeiro lugar, estúdanse os conceptos básicos (definicións, integración das ecuacións da velocidade, etc.), para dar paso en segundo lugar ás teorías que tratan da velocidade de reacción a partir da punto de vista desde un punto de vista teórico (teoría de colisións, do estado de transición e as súas aplicacións), para rematar de estudar no último apartado os distintos tipos de catálise.

Study programme competencies
Code Study programme competences
A1 CE1 - Comprender los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
A2 CE2 - Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
B2 CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4 CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B5 CB5 - Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
B9 CG4 - Trabajar de forma autónoma con iniciativa.
C1 CT1 - Expresarse correctamente, tanto de forma oral coma escrita, en las lenguas oficiales de la comunidad autónoma
C2 CT2 - Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero
C7 CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a un desarrollo sostenible ambiental, económico, político y social.
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad

Learning aims
Learning outcomes Study programme competences
Know the fundamental concepts of kinetical chemical Know the theories that explain the speed of reaction and theie applications Comprise the origin of the catalytic phenomena A1
A2
A3
Comprise the chemical change and the factors that influence in the speed of the chemical reactions Be able to comprise kinetical data and relate them with the mechanisms of reaction. A1
A2
A3
A7
B2
B3
B4
B5
B6
B7
Be able to design, realize and interpret experiments cinéticos in the laboratory. A2
A3
A7
B7
B8
B9
C1
C2
C7
C8

Contents
Topic Sub-topic
Basic concepts of chemical kinetics Rate of chemical reactions
Integration of rate equations
Experimental techniques for measuring reaction rates
Methods for determining reaction orders
Rate of complex reactions (reversible, consecutive, etc)
Derivation of the rate equation from the reaction mechanism, and vice versa
Kinetic Theories and their applications
Collision theory for gas phase reactions
Potential energy surfaces
Transition state theory
Elementary reactions in solution
Diffusion controlled reactions.
Photochemical reactions
Reactions with solids
Catalysis Catalysis: definition and types
Homogeneous catalysis
Microheterogeneous catalysis
Lab experiments Laboratory experiments for the monitoring of chemical reactions with different experimental methods and the determination of rate equations


Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A2 A3 A7 B6 B7 28 50 78
Seminar B2 B3 B4 B5 B6 B7 B8 B9 8 32 40
Laboratory practice B2 B3 B4 B5 C1 C2 C7 C8 15 12 27
Multiple-choice questions A1 A2 A3 A7 B6 B7 B8 B9 C1 C2 C7 C8 0.5 0 0.5
Mixed objective/subjective test A1 A2 A3 A7 B6 B7 B8 B9 C1 C2 C7 C8 3.5 0 3.5
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech The fundamental concepts and theories of the subject are explained
Seminar Problems, questions and doubts related to the theoretical contents are solved.
Laboratory practice It consists of two stages:
Carrying out the assigned experiment in the laboratory
Preparation of the internship report in which the results are described and the data obtained is analyzed.
Multiple-choice questions Short test on fundamental concepts
Mixed objective/subjective test It will consist of problems similar to those solved in the seminars and questions related to the theoretical content.

Personalized attention
Methodologies
Seminar
Laboratory practice
Description
Attendance at tutorials is recommended to resolve any questions that may arise both in solving problems, as well as for the preparation of the laboratory practice or for questions related to the master classes.

Assessment
Methodologies Competencies Description Qualification
Mixed objective/subjective test A1 A2 A3 A7 B6 B7 B8 B9 C1 C2 C7 C8 Written test to answer theoretical questions and solve exercises related to the contents of the lectures, seminars and practices. 80
Laboratory practice B2 B3 B4 B5 C1 C2 C7 C8 In the evaluation of this activity, the laboratory work and the Results Report are taken into account. 10
Multiple-choice questions A1 A2 A3 A7 B6 B7 B8 B9 C1 C2 C7 C8 Multiple choice test 10
 
Assessment comments
-Attendance to the practices and the delivery of the Report, are essential requirements to pass the subject

-To pass the subject, it will be necessary to obtain a grade of no less than 4.5 out of 10 in the mixed test and to achieve, adding the grades of all the activities, a minimum grade of 5.0.

-If the minimum grade in the final mixed test has not been reached, the subject will appear as failed, even if the average of the grades obtained in the different methodologies is higher than 5 (out of a maximum of 10), in which case the final grade awarded will be from 4.5.

-The registration qualification is granted preferably at the first opportunity.

-In the second opportunity, the mixed test will be repeated and the qualification of the other activities will be maintained.

-The qualification of not presented will be granted to those who do not appear for the mixed test.

-Students with recognition of part-time dedication and academic waiver of attendance exemption who cannot attend the seminars, may be assigned different works/problems throughout the course to be exposed during tutoring hours.

Sources of information
Basic P. W. Atkins, J. de Paula (2008). Química Física, 8ª Ed. . Panamericana
Laidler K. J. (1994). Chemical Kinetics . Harper and Row, New York.
Espenson J. H. (1995). Chemical kinetics and reaction mechanisms 2ª ed.. McGraw-Hill, New York.
Bockris, J.O.M., Reddy, A K.N. (1998). Modern Electrochemistry 1. Ionics. 2nd ed.. Plenum Press, New York
P. W. Atkins, J. de Paula (2010). Physical Chemistry, 9th Ed. . Oxford University Press

Complementary LEVINE I. N. (2004). Fisicoquímica 5ª ed.. McGraw-Hill, Madrid
R. A. Jackson (2004). Mechanism in Organic Reactions.. Royal Society of Chemistry (RSC)
P. L. Brezonik (1994). Chemical Kinetics and Process Dynamic in Aquatic Systems.. Lewis Publishers
P. Sanz Pedredo (1992). Físicoquímica para Farmacia y Biología.. Masson-Salvat Medicina
S. R. Logan (2000). Fundamentos de Cinética Química. Addison Wesley
BOCKRIS, J.O.M., REDDY, A.K.N., GAMBOA-ADELCO, M.E. (2000). Modern Electrochemistry 2A. Fundamentals of Electrodics.. Kluwer Academic/Plenum Press: New York
BERRY R. S., RICE S. A., ROSS J. (2000). Physical Chemistry. 2ª ed.. Oxford University Press, New York
KORITA, J, DVORAK, J., KAVAN, L. (1987). Principles of Electrochemistry. 2nd ed.. Wiley, Chichester
J. BERTRAN-RUSCA, J. NUÑEZ-DELGADO Eds , (2002). Química Física, vol. II. Ariel Ciencia


Recommendations
Subjects that it is recommended to have taken before
Chemistry: Equilibrium and Change/610G04008

Subjects that are recommended to be taken simultaneously
Supramolecular Chemistry/610G04027

Subjects that continue the syllabus

Other comments



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.