Identifying Data 2022/23
Subject (*) Supramolecular Chemistry Code 610G04027
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Third Obligatory 6
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Química
Coordinador
Brandariz Lendoiro, Maria Isabel
E-mail
i.brandariz@udc.es
Lecturers
Brandariz Lendoiro, Maria Isabel
Brea Fernández, Roberto Javier
Criado Fernández, Alejandro
Esteban Gomez, David
Mosquera Mosquera, Jesús
E-mail
i.brandariz@udc.es
roberto.brea@udc.es
a.criado@udc.es
david.esteban@udc.es
j.mosquera1@udc.es
Web http://campusvirtual.udc.es
General description Este curso é unha introdución á química supramolecular e divídese en tres bloques fundamentais: en primeiro lugar, estúdanse as forzas intermoleculares responsables da formación de estruturas supramoleculares, para despois afondar no recoñecemento molecular, os receptores moleculares clásicos e o ensamblaxe de metais. para rematar de estudar na última parte, os sistemas supramoleculares biomiméticos

Study programme competencies
Code Study programme competences
A1 CE1 - Comprender los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A4 CE4 - Desarrollar trabajos de síntesis y preparación, caracterización y estudio de las propiedades de materiales en la nanoescala.
A5 CE5 - Conocer los rasgos estructurales de los nanomateriales, incluyendo las principales técnicas para su identificación y caracterización
B2 CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B4 CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B5 CB5 - Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
B9 CG4 - Trabajar de forma autónoma con iniciativa.
B11 CG6 - Comportarse con ética y responsabilidad social como ciudadano/a y como profesional.
C2 CT2 - Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero
C5 CT5 - Entender la importancia de la cultura emprendedora y conocer los medios al alcance de las personas emprendedoras
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad
C9 CT9 - Tener la capacidad de gestionar tiempos y recursos: desarrollar planes, priorizar actividades, identificar las críticas, establecer plazos y cumplirlos

Learning aims
Learning outcomes Study programme competences
Acquire basic knowledge related to Supramolecular Chemistry. A1
A3
A4
A5
Understand the relationship between the structure of chemical compounds and the formation of supramolecules through molecular recognition and self-assembly processes. B2
B4
B5
Interpret data from experimental observations and use of the various experimental techniques used in their characterization. B8
B9
B11
C2
C5
C8
C9
Understand Supramolecular Chemistry as a tool for the construction of complex systems from perfectly defined units and their application in different areas of research. B8
B9
B11
C2
C5
C8
C9

Contents
Topic Sub-topic
Intermolecular forces Interactions involving ions, polar and polarizable molecules, Van der Waals forces. Hydrogen bonding, hydrophobic and hydrophilic interactions, colloids.
Synthetic supramolecular systems Molecular recognition, classical molecular receptors, molecular self-assembly, molecular vessels, metal-organic assemblage
Biomimetic supramolecular systems Combinatorial dynamics, Supramolecular chemistry in biological systems, Supramolecular polymers, Molecular motors, tubular structures, systems with response to external stimuli.
Lab experiments
Laboratory expLaboratory experiments to illustrate the formation of supramolecular structures and their characterization with different experimental methods and techniques

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A3 A4 A5 28 50 78
Seminar B2 B4 B5 B8 B9 8 32 40
Laboratory practice B9 B11 C2 C5 C8 C9 15 12 27
Mixed objective/subjective test A1 A3 A4 A5 B2 B4 B5 B8 B9 B11 C2 C5 C8 C9 4 0 4
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech The fundamental concepts and theories of the subject are explained
Seminar Problems, questions and doubts related to the theoretical contents are solved.
Laboratory practice It consists of two stages:
Carrying out the assigned experiment in the laboratory
Preparation of the internship report in which the results are described and the data obtained is analyzed.
Mixed objective/subjective test It will consist of problems similar to those solved in the seminars and questions related to the theoretical content.

Personalized attention
Methodologies
Laboratory practice
Seminar
Description
Attendance at tutorials is recommended to resolve any questions that may arise both in solving problems, as well as for the preparation of the laboratory practice or for questions related to the master classes.

Assessment
Methodologies Competencies Description Qualification
Mixed objective/subjective test A1 A3 A4 A5 B2 B4 B5 B8 B9 B11 C2 C5 C8 C9 Written test to answer theoretical questions and solve exercises related to the contents of the lectures, seminars and practices. 70
Laboratory practice B9 B11 C2 C5 C8 C9 In the evaluation of this activity, the laboratory work and the Results Report are taken into account. 20
Seminar B2 B4 B5 B8 B9 The work done by the student in the seminars will be taken into account. 10
 
Assessment comments
-Attendance to the practices and the delivery of the Report, are essential requirements to pass the subject

-To pass the subject, it will be necessary to obtain a grade of no less than 4.5 out of 10 in the mixed test and to achieve, adding the grades of all the activities, a minimum grade of 5.0.

-If the minimum grade in the final mixed test has not been reached, the subject will appear as failed, even if the average of the grades obtained in the different methodologies is higher than 5 (out of a maximum of 10), in which case the final grade awarded will be from 4.5.

-The registration qualification is granted preferably at the first opportunity.

-In the second opportunity, the mixed test will be repeated and the qualification of the other activities will be maintained.

-The qualification of not presented will be granted to those who do not appear for the mixed test and for the laboratory practice.

-Students with recognition of part-time dedication and academic waiver of attendance exemption who cannot attend the seminars, may be assigned different works/problems throughout the course to be exposed during tutoring hours.

Sources of information
Basic Jacob N. Israelachvili (2011). Intermolecular and Surface Forces 3ª ed.. Elsevier
Atkins, P. W. (2006). Physical Chemistry. Oxford ; New York : Oxford University Press,
J. W. Steed, J. L. Atwood (2009). Supramolecular Chemistry 2nd Ed. Wiley and Sons
P. A. Gale, J. W. Steed (2012). Supramolecular Chemistry: From molecules to nanomaterials. Wiley and Sons Ltd. (Vol.1 - 2)

Complementary Bockris J.O.M., Reddy A K.N. (1998). Modern Electrochemistry 1. Ionics. 2nd ed.. Plenum Press, New York
Anslyn, E. V., Dougherty D.A. (2006). Modern Physical Organic Chemistry. University Science Books
BERRY R. S., RICE S. A., ROSS J. (2000). Physical Chemistry. 2ª ed.. Oxford University Press, New York
Steed J. W., Atwood J.L. (2009). Supramolecular Chemistry 2ª ed.. Wiley UK


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.