Identifying Data 2022/23
Subject (*) Fundamentals of Biotechnology Code 610G04029
Study programme
Grao en Nanociencia e Nanotecnoloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Third Obligatory 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Bioloxía
Coordinador
De Castro De Antonio, María Eugenia
E-mail
m.decastro@udc.es
Lecturers
Bernal Pita da Veiga, María de los Ángeles
Carrillo Barral, Néstor
De Castro De Antonio, María Eugenia
Pomar Barbeito, Federico
Saavedra Bouza, Almudena
E-mail
angeles.bernal@udc.es
n.carrillo@udc.es
m.decastro@udc.es
federico.pomar@udc.es
almudena.saavedra@udc.es
Web http://https://www.udc.es/es/centros_departamentos_servizos/departamentos/departamento/?codigo=D158
General description A biotecnoloxía é unha rama claramente interdisciplinar da bioloxía, que engloba conceptos e metodoloxías de numerosas ciencias. En combinación coa nanotecnoloxía, a biotecnoloxía xoga un papel fundamental no desenvolvemento e implantación de novas ferramentas con aplicacións tanto na investigación básica como na resolución de problemas prácticos e na obtención de bens e servizos. A materia Fundamentos de Biotecnoloxía é esencial para adquirir os coñecementos básicos e aprender a utilizar ferramentas biotecnolóxicas, tanto en células animais como en células vexetais, así como para coñecer a súa aplicación no ámbito da nanotecnoloxía.

Study programme competencies
Code Study programme competences
A1 CE1 - Comprender los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
A3 CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A6 CE6 - Manipular instrumentación y material propios de laboratorios para ensayos físicos, químicos y biológicos en el estudio y análisis de fenómenos en la nanoescala.
A7 CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
A8 CE8 - Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de la instrumentación y de los productos y nanomateriales.
A10 CE10 - Comprender la legislación en el ámbito del conocimiento y la aplicación de la Nanociencia y Nanotecnología. Aplicar principios éticos en este marco.
B3 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4 CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B6 CG1 - Aprender a aprender
B7 CG2 - Resolver problemas de forma efectiva.
B8 CG3 - Aplicar un pensamiento crítico, lógico y creativo.
C3 CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida
C7 CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a un desarrollo sostenible ambiental, económico, político y social.
C8 CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad

Learning aims
Learning outcomes Study programme competences
Recognize the main applications of biotechnology A3
B3
B4
B7
C3
Identify the main tools of Molecular Biology, metabolic engineering, protein engineering and cell and tissue engineering. A1
A3
B3
B4
B7
Apply the main biotechnological techniques A6
A8
B3
B4
B8
C3
C7
C8
Solve basic biotechnology problems A3
A6
A7
B3
B4
B6
B7
B8
C3
C7
C8
Recognize and apply ethical and legal principles in the field of Biotechnology A10
B3
B4
B8
C8

Contents
Topic Sub-topic
1. INTRODUCTION TO BIOTECHNOLOGY Current concept of Biotechnology. History and development of Biotechnology. Outlook. Importance of Nanobiotechnology.
2. CLONING Purposes of molecular cloning. Basic steps of gene cloning. Polymerase chain reaction. DNA fragmentation: restriction enzymes. Binding of DNA molecules. Cloning and Nanotechnology.
3. GENOMIC LIBRARIES Library concept. Genomic DNA libraries. cDNA libraries. Expression libraries. Amplification, storage and replication of libraries. Libraries in Nanotechnology.
4. PROTEIN ENGINEERING Production of heterologous proteins in bacteria and yeast (Selection of microorganisms. Expression vectors. Expression in transformed cells. Secretion.) Production of recombinant proteins in animal cells (Expression vectors. Baculovirus-mediated protein expression in insect cell cultures ). Applications in Nanotechnology.
5. PROTEIN INMOBILIZATION Enzyme stability. Immobilized biocatalyst concept. immobilization systems. Nano-scale immobilization.
6. TRANSFORMATION AND GENE EDITING Concepts of modification, transformation and gene editing. Direct and indirect genetic transformation methods. Transgenic plants and animals. Transgenic foods. Nanotechnology in genetic modification.
7. CELL AND TISSUE ENGINEERING Introduction to animal and plant cell cultures. Types of crops. Cell culture requirements. Quantification of cellular parameters. contaminations. Cytotoxicity.
8. ETHICAL AND LEGAL ASPECTS Current situation of regulatory regulations, patents. Ethical issues, security, risks. Social perception.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Laboratory practice A3 A6 A7 A8 B3 B4 B6 B7 C3 C7 15 5 20
Document analysis A1 A10 B3 B4 C7 C8 6 8 14
Mixed objective/subjective test A1 A3 A7 B3 B4 2 10 12
Guest lecture / keynote speech B3 B6 B8 C8 28 70 98
 
Personalized attention 6 0 6
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Laboratory practice A series of activities will be carried out in the practice laboratory, so that students learn to handle basic scientific instruments used in biotechnology.
Document analysis Directed activity of group work that will be carried out during the interactive group classes. Students will analyze various documentary sources and must prepare texts or audiovisual materials individually or in small groups.
Mixed objective/subjective test Written test used to assess learning and that can combine different types of questions: multiple choice, association, explanatory or calculation questions and problem solving.
Guest lecture / keynote speech The contents of the subject will be taught by the teachers. The presentations and other documentation will be made available to the students on the Virtual Campus platform.

Personalized attention
Methodologies
Document analysis
Guest lecture / keynote speech
Description
For all the students, personalized tutorials will be carried out focused on the orientation for the acquisition of basic knowledge, the realization of problems, the study of practical cases, the resolution of doubts and clarifications. The tutorial schedule will be specified at the beginning of the course. Students can also request tutorials and ask specific questions via email.

Assessment
Methodologies Competencies Description Qualification
Document analysis A1 A10 B3 B4 C7 C8 Evaluation in which the work during the interactive group sessions and the materials delivered by the student will be taken into account (quality of the works, discussion capacity, use of correct scientific language and verified bibliographic information). 30
Mixed objective/subjective test A1 A3 A7 B3 B4 Assessment of theoretical knowledge 50
Laboratory practice A3 A6 A7 A8 B3 B4 B6 B7 C3 C7 Laboratory practices are considered a MANDATORY attendance activity to pass the subject. A test will be carried out to evaluate the acquired knowledge.
20
 
Assessment comments

Attendance to laboratory practices is mandatory. In order to pass the subject, the score obtained in each of the evaluable parts (laboratory practices, document analysis and mixed objective) must be greater than 45%.

For students with recognition of part-time dedication and academic exemption, the teachers will adopt appropriate actions, so they can be properly evaluated . For those students who do not attend the keynote speech classes, it is highly recommended to make use of the tutorials to resolve doubts and orient themselves in the subject. 


Sources of information
Basic Tzfira, T. e Citovsky, V. (2006). Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr. Opin. Biotechnol. 17:147–154.
Benítez Burraco, A (2005). Avances recientes en Biotecnología vegetal e ingeniería genética de plantas. Editorial Reverté.
Taji, A., Kumar, P., Lakshmanan, P. (2002). In vitro plant breeeding. Ed. Food Products Press.
Niemeyer, C.M., Mirkin, C.A. (2004). Nanobiotechnology Concepts, Applications and Perspectives. Wiley
Omran, B. (2020). Nanobiotechnology: A Multidisciplinary Field of Science. Springer
Basra, A.S. (2000). Plant growth regulators in agriculture and horticulture. Their role and commercial uses. Ed. Food Products Press.
Complementary


Recommendations
Subjects that it is recommended to have taken before
Structural Biochemistry/610G04019
Molecular and Metabolic Biochemistry/610G04023

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.