Datos Identificativos 2019/20
Asignatura (*) Simulación Estatística Código 614493122
Titulación
Mestrado Universitario en Técnicas Estadísticas (Plan 2019)
Descriptores Ciclo Período Curso Tipo Créditos
Mestrado Oficial 2º cuadrimestre
Primeiro Optativa 5
Idioma
Castelán
Modalidade docente Presencial
Prerrequisitos
Departamento Matemáticas
Coordinación
Fernández Casal, Rubén
Correo electrónico
ruben.fcasal@udc.es
Profesorado
Fernández Casal, Rubén
Correo electrónico
ruben.fcasal@udc.es
Web http://eio.usc.es/pub/mte/
Descrición xeral Se pretende que el alumno adquiera destreza en la identificación de problemas reales que pueden ser resueltos mediante simulación y su resolución en la práctica. Para ello se tratará de que el alumno conozca el funcionamiento de los principales algoritmos de generación de números aleatorios uniformes, así como de métodos generales y específicos para simular distintas distribuciones de probabilidad (tanto discretas como continuas y en el caso uni o multidimensional). También se pretende que el alumno conozca las principales aplicaciones de la simulación (especialmente en inferencia estadística), las ventajas y limitaciones de esta metodología y algunas de las técnicas más utilizadas.
Plan de continxencia

Competencias do título
Código Competencias do título
A16 CE1 - Coñecer, identificar, modelar, estudar e resolver problemas complexos de estatística e investigación operativa, nun contexto científico, tecnolóxico ou profesional, xurdidos en aplicacións reais.
A18 CE3 - Adquirir coñecementos avanzados dos fundamentos teóricos subxacentes ás distintas metodoloxías da estatística e a investigación operativa, que permitan o seu desenvolvemento profesional especializado.
A19 CE4 - Adquirir as destrezas necesarias no manexo teórico-práctico da teoría de probabilidade e as variables aleatorias que permitan o seu desenvolvemento profesional no eido científico/académico, tecnolóxico ou profesional especializado e multidisciplinar.
A20 CE5 - Profundizar no coñecemento dos fundamentos teórico-prácticos especializados de modelado e estudo de distintos tipos de relacións de dependencia entre variables estatísticas.
A21 CE6 - Adquirir coñecementos teórico-prácticos avanzados de distintas técnicas matemáticas, orientadas específicamente á axuda na toma de decisións, e desenvolver a capacidade de reflexión para avaliar e decidir entre distintas perspectivas en contextos complexos.
A23 CE8 - Adquirir coñecementos teórico-prácticos avanzados das técnicas destinadas á realización de inferencias e contrastes relativos a variables e parámetros dun modelo estatístico, e saber aplicalos con autonomía suficiente nun contexto científico, tecnolóxico ou profesional.
A24 CE9 - Coñecer e saber aplicar con autonomía en contextos científicos, tecnolóxicos ou profesionais, técnicas de aprendizaxe automático e técnicas de análise de datos de alta dimensión (big data).
A25 CE10 - Adquirir coñecementos avanzados sobre metodoloxías para a obtención e o tratamento de datos derivados de distintas fuentes, como enquisas, internet, ou entornos “na nube".
B1 CB6 - Posuír e comprender coñecementos que acheguen unha base ou oportunidade de ser orixinais no desenvolvemento e/ou aplicación de ideas, a miúdo nun contexto de investigación
B2 CB7 - Que os estudantes saiban aplicar os coñecementos adquiridos e a súa capacidade de resolución de problemas en ámbitos novos ou pouco coñecidos dentro de contextos máis amplos (ou multidisciplinares) relacionados coa súa área de estudo
B3 CB8 - Que os estudantes sexan capaces de integrar coñecementos e enfrontarse á complexidade de formular xuízos a partir dunha información que, sendo incompleta ou limitada, inclúa reflexións sobre as responsabilidades sociais e éticas vinculadas á aplicación dos seus coñecementos e xuízos
B4 CB9 - Que os estudantes saiban comunicar as súas conclusións e os coñecementos e razóns últimas que as sustentan a públicos especializados e non especializados dun modo claro e sen ambigüidades
B5 CB10 - Que os estudantes posúan as habilidades de aprendizaxe que lles permitan continuar estudando dun modo que haberá de ser en gran medida autodirixido ou autónomo.
B17 CG1 - Coñecer, comprender e saber aplicar os principios, metodoloxías e novas tecnoloxías na estatística e a investigación operativa en contextos científico/académicos, tecnolóxicos ou profesionais especializados e multidisciplinares, así como adquirir as destrezas e competencias descritas nos objectivos generales do título.
B18 CG2 - Desenvolver autonomía para identificar, modelar e resolver problemas complexos da estatística e da investigación operativa en contextos científico/académicos, tecnolóxicos ou profesionais especializados e multidisciplinares.
B19 CG3 - Desenvolver a capacidade para realizar estudos e tarefas de investigación e transmitir os resultados a públicos especializados, académicos e xeneralistas.
B20 CG4 - Integrar coñecementos avanzados e enfrontarse á toma de decisións a partir de información científica e técnica.
B21 CG5 - Desenvolver a capacidade de aplicación de algoritmos e técnicas de resolución de problemas complexos no eido da estatística e a investigación operativa, manexando o software especializado axeitado.
C11 CT1 - Desenvolver firmes capacidades de razoamento, análise crítica e autocrítica, así como de argumentación e de síntese, contextos especializados e multidisciplinais.
C12 CT2 - Desenvolver destrezas avanzadas no manexo de Tecnoloxías da Información e a Comunicación (TIC), tanto para a obtención de información como para a difusión do coñecemento, nun ámbito científico/académico, tecnolóxico ou profesional especializado e multidisciplinar.
C13 CT3 - Ser capaz de resolver problemas complexos en novos escenarios mediante a aplicación integrada dos coñecementos.
C14 CT4 - Desenvolver unha sólida capacidade de organización e planificación do estudo, asumindo a responsabilidade do seu propio desenvovemento profesional, para a realización de traballos en equipo e de xeito autónomo.
C15 CT5 - Desenvolver capacidades para o aprendizaxe e a integración no traballo en equipos multidisciplinais, nos ámbitos científico/académico, tecnolóxico e profesional.

Resultados de aprendizaxe
Resultados de aprendizaxe Competencias do título
Conocer los fundamentos de la simulación estadística. AM16
AM18
AM19
AM20
AM21
AM23
AM24
AM25
BP1
BP2
BP3
BP4
BP5
BP17
BP18
BP19
BP20
BP21
CP11
CP12
CP13
CP14
CP15
Saber generar los principales modelos de probabilidad tanto unidimensionales como multidimensionales. AM16
AM18
AM19
AM20
AM21
AM23
AM24
AM25
BP1
BP2
BP3
BP4
BP5
BP17
BP18
BP19
BP20
BP21
CP11
CP12
CP13
CP14
CP15
Conocer y saber usar de forma autónoma el software necesario para aplicar los métodos de simulación al análisis de problemas reales en contextos multidisciplinares. AM16
AM18
AM19
AM20
AM21
AM23
AM24
AM25
BP1
BP2
BP3
BP4
BP5
BP17
BP18
BP19
BP20
BP21
CP11
CP12
CP13
CP14
CP15

Contidos
Temas Subtemas
1. Introducción. Conceptos de sistema real, modelo y definición de simulación. Experimentación real y simulación. Simulación necesaria e innecesaria. Ventajas e inconvenientes de la simulación. Contenidos de la asignatura.
2. Generación de números pseudoaleatorios uniformes en (0,1). Introducción. Propiedades deseables de un generador de números pseudoaleatorios uniformes. Métodos de los cuadrados medios y de Lehmer. Métodos congruenciales. Medidas estadísticas de calidad de un generador de números pseudoaleatorios.
3. Análisis de los resultados de simulación. Diagnosis de la convergencia. Estimación de la precisión. Problemas de estabilización y dependencia.
4. Métodos universales para la generación de variables continuas. Método de inversión. Método de aceptación/ rechazo y sus variantes. Ejemplos de métodos específicos para generación de distribuciones notables.
5. Métodos universales para la generación de variables discretas. Método de la transformación cuantil. Algoritmos basados en búsqueda secuencial. Métodos de truncamiento. Algoritmos basados en árboles binarios. Método de la tabla guía. Método de Alias. Ejemplos de métodos específicos para generación de distribuciones notables.
6. Simulación de distribuciones multidimensionales. Método de las distribuciones condicionadas. Método de aceptación/rechazo. Simulación de datos dependientes: métodos basados en la factorización de la matriz de covarianzas y simulación basada en cópulas. Simulación discreta multivariante.
7. Aplicaciones de la simulación. Aplicaciones en inferencia estadística. Introducción al remuestreo Bootstrap. Integración Monte Carlo. Muestreo de importancia. Optimización Monte Carlo. Temple simulado. Algoritmos genéticos de optimización.
8. Técnicas de reducción de la varianza. Variables antitéticas. Números aleatorios comunes. Muestreo estratificado. Variables de control. Condicionamiento.
9. Introducción a los métodos de cadenas de Markov Monte Carlo. Muestreo de Gibbs. Algoritmo Metropolis Hastings. Diagnosis de un algoritmo MCMC.

Planificación
Metodoloxías / probas Competencias Horas presenciais Horas non presenciais / traballo autónomo Horas totais
Sesión maxistral A25 A24 A23 A21 A20 A19 A18 A16 B1 B2 B3 B5 B17 B18 B20 B21 C11 C12 C13 20 30 50
Prácticas a través de TIC A16 A19 A24 B2 B3 B4 B5 B17 B18 B19 B20 B21 C11 C12 C13 C14 C15 7 10.5 17.5
Seminario A16 A18 A19 A20 A21 A23 A24 A25 B1 B2 B3 B4 B5 B17 B18 B19 B20 B21 C11 C12 C13 C14 C15 7 10.5 17.5
Solución de problemas A16 A18 A19 A20 A21 A23 A24 A25 B1 B2 B3 B4 B5 B17 B18 B19 B20 C11 C12 C13 C14 C15 1 10 11
Proba obxectiva A16 A18 A19 A20 A21 A23 A24 A25 B1 B2 B3 B4 B5 B17 B18 B19 B20 B21 C11 C12 C13 3 17 20
 
Atención personalizada 9 0 9
 
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado

Metodoloxías
Metodoloxías Descrición
Sesión maxistral Sesiones expositivas, en las que los presentarán conceptos y/o procedimientos, aportando información básica necesaria para entender una perspectiva teórica o un procedimiento práctico, promoviendo la participación del estudiantado.
Prácticas a través de TIC Sesiones interactivas de prácticas de laboratorio (informática) o de resolución de problemas, donde los docentes apoyarán y supervisarán la puesta en práctica de los conocimientos adquiridos por parte del alumnado.
Seminario Actividades de aprendizaje colaborativo, en las que los docentes coordinarán la realización de trabajos en grupo.
Solución de problemas Actividades de aprendizaje autónomo, en las que los docentes guiarán la realización de trabajos individuales por parte del alumnado.
Proba obxectiva Prueba escrita para la evaluación del aprendizaje que constará de una parte teórica y de otra práctica.

Atención personalizada
Metodoloxías
Sesión maxistral
Prácticas a través de TIC
Proba obxectiva
Seminario
Solución de problemas
Descrición
Atención al alumno tanto durante el desarrollo de las clases como en los horarios de tutorías.

Avaliación
Metodoloxías Competencias Descrición Cualificación
Sesión maxistral A25 A24 A23 A21 A20 A19 A18 A16 B1 B2 B3 B5 B17 B18 B20 B21 C11 C12 C13 Avaliaranse os coñecementos adquiridos mediante a realización dunha proba escrita. 30
Prácticas a través de TIC A16 A19 A24 B2 B3 B4 B5 B17 B18 B19 B20 B21 C11 C12 C13 C14 C15 Avaliaranse os coñecementos adquiridos mediante a realización dunha proba escrita. 30
Seminario A16 A18 A19 A20 A21 A23 A24 A25 B1 B2 B3 B4 B5 B17 B18 B19 B20 B21 C11 C12 C13 C14 C15 Presentación dos traballos resoltos. 40
 
Observacións avaliación

Fontes de información
Bibliografía básica Cao, R. (2002). Introducción a la simulación y a la teoría de colas. Netbiblo
Robert, C.P. y Casella G. (2010). Introducing Monte Carlo Methods with R. Springer
Jones, O., Maillardet, R. y Robinson A. (2009). Introduction to Scientific Programming and Simulation Using R. CRC
Gentle, J.E. (2003). Random number generation and Monte Carlo methods. Springer-Verlag

Bibliografía complementaria Bratley, P. (1990). A guide to simulation. Springer-Verlag
Evans, M. y Swartz, T. (2000). Approximating integrals via Monte Carlo and . Oxford University Press
Robert, C.P. y Casella, G. (2004). Monte Carlo statistical methods. Springer-Verlag
Devroye, L. (1986). Non-uniform random variate generation. Springer-Verlag
Ross, S.M. (1999). Simulación. Prentice Hall
Ripley, B.D. (1987). Stochastic Simulation. Wiley


Recomendacións
Materias que se recomenda ter cursado previamente

Materias que se recomenda cursar simultaneamente

Materias que continúan o temario

Observacións


(*)A Guía docente é o documento onde se visualiza a proposta académica da UDC. Este documento é público e non se pode modificar, salvo casos excepcionais baixo a revisión do órgano competente dacordo coa normativa vixente que establece o proceso de elaboración de guías