Identifying Data 2020/21
Subject (*) Acoustics Code 614855209
Study programme
Mestrado Universitario en Matemática Industrial (2013)
Descriptors Cycle Period Year Type Credits
Official Master's Degree 2nd four-month period
First Optional 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Matemáticas
Coordinador
Prieto Aneiros, Andrés
E-mail
andres.prieto@udc.es
Lecturers
Hervella Nieto, Luis Maria
Prieto Aneiros, Andrés
E-mail
luis.hervella@udc.es
andres.prieto@udc.es
Web http://Microsoft Teams and Moodle (moodle.udc.es)
General description Introdución aos modelos matemáticos e os métodos de simulación numérica usados no ámbito da Acústica e dos problemas de vibracións acústico-estruturais
Contingency plan 1. Modificacións dos contidos.
O contido non se modifica.

2. Metodoloxías
* Metodoloxías de ensino que se manteñen
Todas as sesión manteranse no seu horario regular de xeito sincrónico usando o sistema de videoconferencia do grupo Microsoft Teams.

* Cambio de metodoloxías de ensino
As titorías presenciais e a atención personalizada presencial modificaranse e realizaranse de xeito asíncrono usando o "chat" da plataforma Microsoft Teams.

3. Mecanismos de atención personalizada aos estudantes.
* Videoconferencia en Microsoft Teams: sesións expositivas de xeito síncrono
* Videoconferencia en Microsoft Teams: de forma síncrona mediante titorías individuais / de grupo
* Chat persoal por Microsoft Teams: titorías individuais ou de grupo de forma asíncrona

4. Modificacións na avaliación.
A avaliación non cambia.

* Comentarios de avaliación:
Tanto a primeira como a segunda oportunidade terán a mesma forma de avaliación. No caso de realizar a proba final de xeito non presencial, todas as preguntas serán respondidas por escrito (enviando unha foto ou copia dixitalizada dos cálculos feitos).

5. Modificacións da bibliografía ou webografía.
Non se modifican a bibliografía e os materiais de uso que estarán dispoñible en Microsoft Teams e moodle.

Study programme competencies
Code Study programme competences
A1 Alcanzar un conocimiento básico en un área de Ingeniería/Ciencias Aplicadas, como punto de partida para un adecuado modelado matemático, tanto en contextos bien establecidos como en entornos nuevos o poco conocidos dentro de contextos más amplios y multidisciplinares.
A2 Modelar ingredientes específicos y realizar las simplificaciones adecuadas en el modelo que faciliten su tratamiento numérico, manteniendo el grado de precisión, de acuerdo con requisitos previamente establecidos.
A5 Ser capaz de validar e interpretar los resultados obtenidos, comparando con visualizaciones, medidas experimentales y/o requisitos funcionales del correspondiente sistema físico/de ingeniería.
A6 Ser capaz de extraer, empleando diferentes técnicas analíticas, información tanto cualitativa como cuantitativa de los modelos.
B1 Saber aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios, incluyendo la capacidad de integrarse en equipos multidisciplinares de I+D+i en el entorno empresarial.
B2 Poseer conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación, sabiendo traducir necesidades industriales en términos de proyectos de I+D+i en el campo de la Matemática Industrial
B4 Saber comunicar las conclusiones, junto con los conocimientos y razones últimas que las sustentan, a públicos especializados y no especializados de un modo claro y sin ambigüedades.
B5 Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo, y poder emprender con éxito estudios de doctorado.

Learning aims
Learning outcomes Study programme competences
To know and understand the equations governing acoustic and vibration phenomena and moreover, to know both its mathematical formulation and theoretical analysis. AC1
AC2
BC1
BC3
BR1
To know how to apply computational methods to solve numerically the most typical equations in Acoustics and to know the difficulties involved on it. AC1
AC2
AC6
BJ1
To be able of developing the full study of an acoustic problem, from the initial modeling phase to the analysis of simplified cases and the numerical computation of its solution choosing a adequate discrete technique.. AC1
AC6
BJ1
BC1
BC3
To understand some practical concepts which are often applied in experimental acoustic problems. AC5
AC6
BC3
BR1

Contents
Topic Sub-topic
Lesson 1. Continuous modelling. 1.1. Introduction. Harmonic oscillator.
1.2. Basic elements of Algebra, Vector and Tensor Calculus.
1.3. Kinematics.
1.4. Mass and momentum.
1.5. Constitutive laws.
1.6. Lineal models.
1.7. Vibrations in continuum media.
1.8. Elements of structural acoustics (vibro-acoustics).
Lesson 2. Acoustic propagations in one dimension. 2.1. One-dimensional models
2.2. Wave equation in 1D.
2.3. Harmonic regime.
2.4. Coupling boundary conditions. Thin layer models.
2.5. Time-harmonic wave propagation in a multilayered.
Lesson 3. Elements of applied acoustics 3.1. Sound thresholds. Decibels. Pressure, intensity, and power levels
3.2. Reflection. Absorption and transmission coefficients.
3.3 Total absorption and surface or volume averages.
Lesson 4. Acoustic propagation in three dimensions. 4.1. Three-dimensional wave equation
4.2. Time-harmonic solutions. Three-dimensional Helmholtz equation.
Lesson 5. Numerical solutions. 5.1. Helmholtz problems in bounded domains.
5.2. Structural-acoustic problems
5.3. Helmholtz problems in bounded domains.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 A2 B2 B1 42 84 126
Multiple-choice questions A6 B4 3 0 3
Problem solving A5 A6 B5 B4 0 20 20
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Lectures will be taught by a video-conference system in campus
classrooms of A Coruña, Santiago, Vigo and Madrid. The course teachers will explain
the contents of the course using slides and lecture notes. Students will be highly
encouraged to ask and question about any topic explained during the lectures.
Multiple-choice questions Once the lecture period is over, a writing exam will be scheduled,
where the students will to solve questions and problems with the help of books
(included in the course bibliography) or their own lecture notes. In this test, the
students should show the knowledge accomplished on the course topics.
Problem solving During this course, some exercises and problems related to the
course contents will be assigned. They will have to be solved and submitted taking
into account a prescribed deadline.

Personalized attention
Methodologies
Guest lecture / keynote speech
Problem solving
Description
If it is required by the students, further support will be provided to complete adequately the course assignments.
This additional assistance will be on-line (using e-mail or Microsoft Teams) or in-campus (at the Faculty of Computer Science in A Coruña).

Assessment
Methodologies Competencies Description Qualification
Guest lecture / keynote speech A1 A2 B2 B1 It will be taken into account the active attendance to the
lecture sessions, and the student involvement during the lecture recitations.
20
Multiple-choice questions A6 B4 The writing exam will include all the topics studied in this course. It
will be allowed the use of books (included in the course bibliography) or student
lecture notes.
50
Problem solving A5 A6 B5 B4 During the lecture period, some exercises and problems will be
assigned to the students. These assignments should be completed individually and
submitted before the final exam takes place.
30
 
Assessment comments

For
those students which were using the second opportunity to pass their assessments, the deadline
for the submission of their assignments will be the final exam date
of this second opportunity. If the assignments would not be submitted
in this second period, only the assignments submitted in the period
of the first opportunity would be evaluated.


Sources of information
Basic M.E. Gurtin (1981). An Introduction to Continuum Mechanics. Academic Press, San Diego
F. Ihlenburg (1998). Finite Element Analysis of Acoustic Scattering. Springer-Verlag, Berlin

Complementary D.T. Blackstock (2000). Fundamentals of Physical Acoustics. John Wiley & Sons, New York
H.J.-P. Morand, R. Ohayon (1995). Fluid-Structure Interaction. John Wiley & Sons, New York
R. Dautray, J.L. Lions (1990). Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, Berlín
F. Fahy (1994). Sound and Structural Vibration: Radiation, Transmission and Response. Academic Press, London


Recommendations
Subjects that it is recommended to have taken before
Partial differential equations/614855203
Continuum mechanics/614855205

Subjects that are recommended to be taken simultaneously
Professional software in acoustics/614855216

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.